Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorPramanik, Atin
dc.contributor.authorManche, Alexis G.
dc.contributor.authorClulow, Rebecca
dc.contributor.authorLightfoot, Philip
dc.contributor.authorArmstrong, A. Robert
dc.date.accessioned2022-08-08T09:30:09Z
dc.date.available2022-08-08T09:30:09Z
dc.date.issued2022-09-07
dc.identifier280747201
dc.identifier0a5dad9e-73fd-41d9-b5e7-cfe476b68dd8
dc.identifier000831291500001
dc.identifier85135328567
dc.identifier.citationPramanik , A , Manche , A G , Clulow , R , Lightfoot , P & Armstrong , A R 2022 , ' Exploiting anion and cation redox chemistry in lithium-rich perovskite oxalate : a novel next-generation Li/Na-ion battery electrode ' , Dalton Transactions , vol. 51 , no. 33 , pp. 12467-12475 . https://doi.org/10.1039/D2DT01447Een
dc.identifier.issn1477-9226
dc.identifier.otherRIS: urn:DE8B0E16086137E506D52B0787B1BAEC
dc.identifier.otherORCID: /0000-0001-7048-3982/work/116910349
dc.identifier.otherORCID: /0000-0003-1937-0936/work/116910438
dc.identifier.urihttps://hdl.handle.net/10023/25790
dc.descriptionAuthors thank EPSRC EP/R030472/1 for financial support. AGM wishes to thank the Faraday Institution for financial support and training (Grant Number FITG033). The authors are also grateful to EPSRC Light Element Analysis Facility Grant EP/T019298/1 and the EPSRC Strategic Equipment Resource Grant EP/R023751/1.en
dc.description.abstractThe fundamental understanding of electrochemical reaction kinetics for lithium/sodium-ion batteries (LIBs & NIBs) is a significant criterion for advancing new-generation electrode materials. Herein, we demonstrate a novel lithium-rich perovskite oxalate KLi3Fe(C2O4)3 (KLFC) cathode with the combination of cation and anion redox delivering discharge capacities of 86 and 99 mA h g−1 after 100 cycles for a LIB and NIB, respectively, with good cyclability. Experimental Raman spectroscopy analysis combined with DFT calculations of charged/discharged samples illustrate the oxalate anion redox activity. Further, first-principles calculations of the partial density of states and Bader charges analysis have also characterised the redox behaviour and charge transfer during the potassium extraction processes.
dc.format.extent9
dc.format.extent2899653
dc.language.isoeng
dc.relation.ispartofDalton Transactionsen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subjectMCCen
dc.subject.lccQDen
dc.titleExploiting anion and cation redox chemistry in lithium-rich perovskite oxalate : a novel next-generation Li/Na-ion battery electrodeen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1039/D2DT01447E
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/T019298/1en
dc.identifier.grantnumberEP/R023751/1en


This item appears in the following Collection(s)

Show simple item record