St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetic confinement of dense plasma inside (and outside) stellar coronae : magnetic confinement in stellar coronae

Thumbnail
View/Open
Waugh_2022_MNRAS_Magnetic_confinement_CC.pdf (1.503Mb)
Date
08/2022
Author
Waugh, Rosie
Jardine, Moira Mary
Funder
Science & Technology Facilities Council
Grant ID
ST/R00824/1
Keywords
Stars: magnetic field
Stars: mass loss
Stars: low-mass
QB Astronomy
QC Physics
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Magnetic confinement of dense plasma is found in the magnetospheres of both high and low mass stars. Trapped material traces the magnetic field structure, often at large distances from the star where the magnetic structure is otherwise difficult to observe. This work looks specifically at rapidly rotating, solar-like stars where this behaviour is well observed in the form of “slingshot” prominences. We have produced a model for generating cooled magnetic loops in equilibrium with a range of coronal magnetic fields. These loops can be used to populate model coronae and confine material at a wide range of heights above the stellar surface. We calculate masses for slingshot prominences for the star AB Doradus that are consistent with observational values. The model produces two types of solution: loops with summits at low heights and tall solutions beyond the co-rotation radius. We show that the low-lying solutions are footpoint heavy and generally follow the shape of the background field. We refer to these as solar-like prominences. The tall solutions are summit heavy and are centrifugally supported. These are are the slingshot prominences. These tall solutions can be found within the stellar wind, beyond the closed corona. Hα trails are generated for various coronal field structures with a range of field geometries and coronal extents. Similar Hα trails are produced by a range of global field structures, which implies that magnetic confinement of material should be common in rapidly rotating stars.
Citation
Waugh , R & Jardine , M M 2022 , ' Magnetic confinement of dense plasma inside (and outside) stellar coronae : magnetic confinement in stellar coronae ' , Monthly Notices of the Royal Astronomical Society , vol. 514 , no. 4 , stac1698 , pp. 5465–5477 . https://doi.org/10.1093/mnras/stac1698
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stac1698
ISSN
0035-8711
Type
Journal article
Rights
Copyright © The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
Funding: The authors acknowledge support from STFC consolidated grant number ST/R000824/1.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25692

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter