Thermally activated and aggregation-regulated excitonic coupling enable emissive high-lying triplet excitons
Date
08/08/2022Grant ID
101025143
EP/P010482/1
SRF\R1\201089
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Room-temperature phosphorescence (RTP) originating from higher-lying triplet excitons remains a rather rarely documented occurrence for purely organic molecular systems. Here, we report two naphthalene-based RTP luminophores whose phosphorescence emission is enabled by radiative decay of high-lying triplet excitons. In contrast, upon cooling the dominant phosphorescence originates from the lowest-lying triplet excited state, which is manifested by a red-shifted emission. Photophysical and theoretical studies reveal that the unusual RTP results from thermally activated excitonic coupling between different conformations of the compounds. Aggregation-regulated excitonic coupling is observed when increasing the doping concentration of the emitters in poly(methylmethacrylate) (PMMA). Further, the RTP quantum efficiency improves more than 80-fold in 1,3-bis(N-carbazolyl)benzene (mCP) compared to that in PMMA. This design principle offers important insight into triplet excited state dynamics and has been exploited in afterglow-indicating temperature sensing.
Citation
Wang , T , De , J , Wu , S , Gupta , A K & Zysman-Colman , E 2022 , ' Thermally activated and aggregation-regulated excitonic coupling enable emissive high-lying triplet excitons ' , Angewandte Chemie International Edition , vol. 61 , no. 33 , e202206681 . https://doi.org/10.1002/anie.202206681
Publication
Angewandte Chemie International Edition
Status
Peer reviewed
ISSN
1433-7851Type
Journal article
Rights
Copyright © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
Funding: Horizon 2020 Framework Programme (Grant Number(s): 897098; Grant recipient(s): Tao Wang, Eli Zysman-Colman); Horizon 2020 Framework Programme (Grant Number(s): 101025143; Grant recipient(s): Eli Zysman-Colman, Joydip De); Engineering and Physical Sciences Research Council (Grant Number(s): EP/P010482/1; Grant recipient(s): Eli Zysman-Colman); Royal Society (Grant Number(s): SRF\R1\201089; Grant recipient(s): Abhishek Kumar Gupta, Eli Zysman-Colman); China Scholarship Council (GrantNumber(s): 201906250199; Grant recipient(s): Sen Wu)Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.