Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBanaji, Amlan
dc.contributor.authorFraser, Jonathan
dc.date.accessioned2022-06-30T16:30:03Z
dc.date.available2022-06-30T16:30:03Z
dc.date.issued2022-06-21
dc.identifier.citationBanaji , A & Fraser , J 2022 , ' Intermediate dimensions of infinitely generated attractors ' , Transactions of the American Mathematical Society .en
dc.identifier.issn0002-9947
dc.identifier.otherPURE: 280228120
dc.identifier.otherPURE UUID: f7057e82-3efd-4f74-be82-e61d400e9ab3
dc.identifier.urihttp://hdl.handle.net/10023/25591
dc.descriptionFunding: RSE Sabbatical Research Grant, award number: 70249; Leverhulme Trust Research Project Grant, RPG-2019-034; EPSRC Standard Grant (PI), EP/R015104/1.en
dc.description.abstractWe study the dimension theory of limit sets of iterated function systems consisting of a countably infinite number of contractions. Our primary focus is on the intermediate dimensions: a family of dimensions depending on a parameter θ ε [0; 1] which interpolate between the Hausdorff and box dimensions. Our main results are in the case when all the contractions are conformal. Under a natural separation condition we prove that the intermediate dimensions of the limit set are the maximum of the Hausdorff dimension of the limit set and the intermediate dimensions of the set of fixed points of the contractions. This builds on work of Mauldin and Urbanski concerning the Hausdorff and upper box dimension. We give several (often counter-intuitive) applications of our work to dimensions of projections, fractional Brownian images, and general Hölder images. These applications apply to well-studied examples such as sets of numbers which have real or complex continued fraction expansions with restricted entries.  We also obtain several results without assuming conformality or any separation conditions. We prove general upper bounds for the Hausdorff, box and intermediate dimensions of infinitely generated attractors in terms of a topological pressure function. We also show that the limit set of a ‘generic’ infinite iterated function system has box and intermediate dimensions equal to the ambient spatial dimension, where ‘generic’ can refer to any one of (i) full measure; (ii) prevalent; or (iii) comeagre.
dc.language.isoeng
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.rightsCopyright © 2022 the Author(s). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://www.ams.org/cgi-bin/mstrack/accepted_papers/tran.en
dc.subjectInfinite iterated function systemen
dc.subjectConformal iterated function systemen
dc.subjectIntermediate dimensionsen
dc.subjectHausdorff dimensionen
dc.subjectBox dimensionen
dc.subjectTopological pressure functionen
dc.subjectContinued fractionsen
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccQAen
dc.titleIntermediate dimensions of infinitely generated attractorsen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Society of Edinburghen
dc.contributor.sponsorThe Leverhulme Trusten
dc.contributor.sponsorEPSRCen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.description.statusPeer revieweden
dc.identifier.urlhttps://www.ams.org/cgi-bin/mstrack/accepted_papers/tranen
dc.identifier.urlhttps://doi.org/10.48550/arXiv.2104.15133en
dc.identifier.grantnumberN/Aen
dc.identifier.grantnumberRPG-2019-034en
dc.identifier.grantnumberEP/R015104/1en


This item appears in the following Collection(s)

Show simple item record