St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emission and absorption tuning in TADF B,N-doped heptacenes : towards ideal-blue hyperfluorescent OLEDs

Thumbnail
View/Open
Stavrou_2022_AOM_Emission_Absorption_Tuning_CC.pdf (2.412Mb)
Date
14/06/2022
Author
Stavrou, Kleitos
Madayanad Suresh, Subeesh
Hall, David
Danos, Andrew
Kukhta, Nadzeya A.
Slawin, Alexandra M. Z.
Warriner, Stuart
Beljonne, David
Monkman, Andrew
Zysman-Colman, Eli
Funder
European Commission
European Commission
The Leverhulme Trust
The Royal Society
Grant ID
838885
812872
RPG-2016-047
SRF\R1\201089
Keywords
Hyperfluorescence
MR-TADF
Multi-resonant thermally activated delayed fluorescence
OLEDs
Organic light-emitting diodes
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Developing high-efficiency purely organic blue organic light-emitting diodes (OLEDs) that meet the stringent industry standards is a major current research challenge. Hyperfluorescent device approaches achieve in large measure the desired high performance by combining the advantages of a high-efficiency thermally activated delayed fluorescence (TADF) assistant dopant with a narrowband deep-blue multi-resonant TADF (MR-TADF) terminal emitter. However, this approach requires suitable spectral overlap to support Förster resonance energy transfer (FRET) between the two. Here, a color tuning of a recently reported MR-TADF B,N-heptacene core through control of the boron substituents is demonstrated. While there is little impact on the intrinsic TADF properties—as both singlet and triplet energies decrease in tandem—this approach improves the emission color coordinate as well as the spectral overlap for blue hyperfluorescence OLEDs (HF OLEDs). Crucially, the red-shifted and more intense absorption allows the new MR-TADF emitter to pair with a high-performance TADF assistant dopant and achieve maximum external quantum efficiency (EQEmax) of 15% at color coordinates of (0.15 and 0.10). The efficiency values recorded for the device at a practical luminance of 100 cd m–2 are among the highest reported for HF TADF OLEDs with CIEy ≤ 0.1.
Citation
Stavrou , K , Madayanad Suresh , S , Hall , D , Danos , A , Kukhta , N A , Slawin , A M Z , Warriner , S , Beljonne , D , Monkman , A & Zysman-Colman , E 2022 , ' Emission and absorption tuning in TADF B,N-doped heptacenes : towards ideal-blue hyperfluorescent OLEDs ' , Advanced Optical Materials , vol. Early View , 2200688 . https://doi.org/10.1002/adom.202200688
Publication
Advanced Optical Materials
Status
Peer reviewed
DOI
https://doi.org/10.1002/adom.202200688
ISSN
2195-1071
Type
Journal article
Rights
Copyright © 2022 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 838885 (NarrowbandSSL) and under the Marie Skłodowska Curie grant agreement No 812872 (TADFlife). S.M.S. acknowledges support from the Marie Skłodowska-Curie Individual Fellowship (grant agreement No 838885 NarrowbandSSL). The St. Andrews team would like to thank the Leverhulme Trust (RPG-2016-047) for financial support. E. Z.-C. is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F. R. S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n 1117545.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25529

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter