Show simple item record

Files in this item


Item metadata

dc.contributor.authorLinnell, Stephanie F.
dc.contributor.authorHirsbrunner, Moritz
dc.contributor.authorImada, Saki
dc.contributor.authorCibin, Giannoantonio
dc.contributor.authorNaden, Aaron B.
dc.contributor.authorChadwick, Alan V.
dc.contributor.authorIrvine, John T. S.
dc.contributor.authorDuda, Laurent C.
dc.contributor.authorArmstrong, A. Robert
dc.identifier.citationLinnell , S F , Hirsbrunner , M , Imada , S , Cibin , G , Naden , A B , Chadwick , A V , Irvine , J T S , Duda , L C & Armstrong , A R 2022 , ' Enhanced cycling stability in the anion redox material P3-type Zn-substituted sodium manganese oxide ' , ChemElectroChem , vol. 9 , no. 11 , e202200240 .
dc.identifier.otherPURE: 279142690
dc.identifier.otherPURE UUID: 337a5ce1-72ea-4856-9a48-397068081b46
dc.identifier.otherORCID: /0000-0002-8462-2514/work/114335694
dc.identifier.otherORCID: /0000-0002-8394-3359/work/114335698
dc.identifier.otherORCID: /0000-0003-2876-6991/work/114335876
dc.identifier.otherORCID: /0000-0003-1937-0936/work/114336037
dc.identifier.otherScopus: 85132187169
dc.identifier.otherWOS: 000807119100001
dc.descriptionFunding: Faraday Institution (Grant Number(s): FIRG018), Diamond Light Source (Grant Number(s): SP14239), Engineering and Physical Sciences Research Council (Grant Number(s): EP/L017008/1, EP/R023751/1, EP/T019298/1), SPRing8 (Grant Number(s): 2021A1425).en
dc.description.abstractSodium layered oxides showing oxygen redox activity are promising positive electrodes for sodium‑ion batteries (SIBs). However, structural degradation typically results in limited reversibility of the oxygen redox activity. Herein, the effect of Zn‑doping on the electrochemical properties of P3-type sodium manganese oxide, synthesised under air and oxygen is investigated for the first time. Air‑Na 0.67 Mn 0.9 Zn 0.1 O 2 and Oxy‑Na 0.67 Mn 0.9 Zn 0.1 O 2 exhibit stable cycling performance between 1.8 and 3.8 V, each maintaining 96% of their initial capacity after 30 cycles, where Mn 3+ /Mn 4+ redox dominates. Increasing the voltage range to 1.8‑4.3 V activates oxygen redox. For the material synthesised under air, oxygen redox activity is based on Zn, with limited reversibility. The additional transition metal vacancies in the material synthesised under oxygen result in enhanced oxygen redox reversibility with small voltage hysteresis. These results may assist the development of high‑capacity and structurally stable oxygen redox‑based materials for SIBs.
dc.rightsCopyright © 2022 The Authors. ChemElectroChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.subjectAnion redox chemistryen
dc.subjectLayered compoundsen
dc.subjectPositive electrode materialen
dc.subjectTransition metal vacanciesen
dc.subjectQD Chemistryen
dc.titleEnhanced cycling stability in the anion redox material P3-type Zn-substituted sodium manganese oxideen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record