St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radio masers on WX UMa : hints of a Neptune-sized planet, or magnetospheric reconnection?

Thumbnail
View/Open
Kavanagh_2022_MNRAS_Radio_masers_WX_UMa_AAM.pdf (8.789Mb)
Date
01/07/2022
Author
Kavanagh, Robert D
Vidotto, Aline A
Vedantham, Harish K
Jardine, Moira M
Callingham, Joe R
Morin, Julien
Keywords
Stars: individual: WX UMa
Stars: winds
Stars: mass-loss
Stars: magnetic field
Radio continuum: planetary systems
Outflows
QB Astronomy
QC Physics
NDAS
MCC
Metadata
Show full item record
Abstract
The nearby M dwarf WX UMa has recently been detected at radio wavelengths with LOFAR. The combination of its observed brightness temperature and circular polarisation fraction suggests that the emission is generated via the electron-cyclotron maser instability. Two distinct mechanisms have been proposed to power such emission from low-mass stars: either a sub-Alfvénic interaction between the stellar magnetic field and an orbiting planet, or reconnection at the edge of the stellar magnetosphere. In this paper, we investigate the feasibility of both mechanisms, utilising the information about the star’s surrounding plasma environment obtained from modelling its stellar wind. Using this information, we show that a Neptune-sized exoplanet with a magnetic field strength of 10 – 100 G orbiting at ∼0.034 au can accurately reproduce the observed radio emission from the star, with corresponding orbital periods of 7.4 days. Due to the stellar inclination, a planet in an equatorial orbit is unlikely to transit the star. While such a planet could induce radial velocity semi-amplitudes from 7 to 396 m s−1, it is unlikely that this signal could be detected with current techniques due to the activity of the host star. The application of our planet-induced radio emission model here illustrates its exciting potential as a new tool for identifying planet-hosting candidates from long-term radio monitoring. We also develop a model to investigate the reconnection-powered emission scenario. While this approach produces less favourable results than the planet-induced scenario, it nevertheless serves as a potential alternative emission mechanism which is worth exploring further.
Citation
Kavanagh , R D , Vidotto , A A , Vedantham , H K , Jardine , M M , Callingham , J R & Morin , J 2022 , ' Radio masers on WX UMa : hints of a Neptune-sized planet, or magnetospheric reconnection? ' , Monthly Notices of the Royal Astronomical Society , vol. 514 , no. 1 , stac1264 , pp. 675–688 . https://doi.org/10.1093/mnras/stac1264
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stac1264
ISSN
0035-8711
Type
Journal article
Rights
Copyright © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1093/mnras/stac1264.
Description
Funding: RDK acknowledges funding received from the Irish Research Council (IRC) through the Government of Ireland Postgraduate Scholarship Programme. RDK and AAV acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 817540, ASTROFLOW). We acknowledge the provisions of the Space Weather Modelling Framework (SWMF) code from the Center for Space Environment Modeling (CSEM) at the University of Michigan, and the computational resources of the Irish Centre for High End Computing (ICHEC), both of which were utilised in this work.
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/2205.01661v1
URI
http://hdl.handle.net/10023/25359

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter