St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical evidence for phase transitions of NP-complete problems for instances drawn from Lévy-stable distributions

Thumbnail
View/Open
AbramConnellyPhDThesis.pdf (1.417Mb)
Date
11/2011
Author
Connelly, Abram
Supervisor
Gent, Ian
Metadata
Show full item record
Abstract
Random NP-Complete problems have come under study as an important tool used in the analysis of optimization algorithms and help in our understanding of how to properly address issues of computational intractability. In this thesis, the Number Partition Problem and the Hamiltonian Cycle Problem are taken as representative NP-Complete classes. Numerical evidence is presented for a phase transition in the probability of solution when a modified Lévy-Stable distribution is used in instance creation for each. Numerical evidence is presented that show hard random instances exist near the critical threshold for the Hamiltonian Cycle problem. A choice of order parameter for the Number Partition Problem’s phase transition is also given. Finding Hamiltonian Cycles in Erdös-Rényi random graphs is well known to have almost sure polynomial time algorithms, even near the critical threshold. To the author’s knowledge, the graph ensemble presented is the first candidate, without specific graph structure built in, to generate graphs whose Hamiltonicity is intrinsically hard to determine. Random graphs are chosen via their degree sequence generated from a discretized form of Lévy-Stable distributions. Graphs chosen from this distribution still show a phase transition and appear to have a pickup in search cost for the algorithms considered. Search cost is highly dependent on the particular algorithm used and the graph ensemble is presented only as a potential graph ensemble to generate intrinsically hard graphs that are difficult to test for Hamiltonicity. Number Partition Problem instances are created by choosing each element in the list from a modified Lévy-Stable distribution. The Number Partition Problem has no known good approximation algorithms and so only numerical evidence to show the phase transition is provided without considerable focus on pickup in search cost for the solvers used. The failure of current approximation algorithms and potential candidate approximation algorithms are discussed.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Computer Science Theses
URI
http://hdl.handle.net/10023/2533

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter