Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGuo, Yudan
dc.contributor.authorKroeze, Ronen M.
dc.contributor.authorMarsh, Brendan P.
dc.contributor.authorGopalakrishnan, Sarang
dc.contributor.authorKeeling, Jonathan
dc.contributor.authorLev, Benjamin L.
dc.date.accessioned2022-05-09T23:47:36Z
dc.date.available2022-05-09T23:47:36Z
dc.date.issued2021-11-11
dc.identifier275589035
dc.identifier2aae9c8c-8321-4556-8b73-5320c0ac7c9f
dc.identifier85118899703
dc.identifier000722157200005
dc.identifier.citationGuo , Y , Kroeze , R M , Marsh , B P , Gopalakrishnan , S , Keeling , J & Lev , B L 2021 , ' An optical lattice with sound ' , Nature , vol. 599 , no. 7884 , pp. 211-215 . https://doi.org/10.1038/s41586-021-03945-xen
dc.identifier.issn0028-0836
dc.identifier.otherArXiv: http://arxiv.org/abs/2104.13922v2
dc.identifier.otherORCID: /0000-0002-4283-552X/work/103137678
dc.identifier.urihttps://hdl.handle.net/10023/25329
dc.descriptionFunding: We acknowledge funding support from the Army Research Office. Y.G. and B.M. acknowledge funding from the Stanford Q-FARM Graduate Student Fellowship and the NSF Graduate Research Fellowship, respectively. S.G. acknowledges support from NSF Grant No. DMR-1653271.en
dc.description.abstractQuantized sound waves—phonons—govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs). The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff. Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials. Here, we create an optical lattice with phonon modes using a Bose–Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of an active quantum gas microscope, the multimode cavity QED system both images the phonons and induces the crystallization that supports phonons via short-range, photon-mediated atom–atom interactions. Dynamical susceptibility measurements reveal the phonon dispersion relation, showing that these collective excitations exhibit a sound speed dependent on the BEC–photon coupling strength. Our results pave the way for exploring the rich physics of elasticity in quantum solids, ranging from quantum melting transitions to exotic ‘fractonic’ topological defects in the quantum regime.
dc.format.extent277224
dc.language.isoeng
dc.relation.ispartofNatureen
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectDASen
dc.subject.lccQCen
dc.subject.lccTKen
dc.titleAn optical lattice with sounden
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1038/s41586-021-03945-x
dc.description.statusPeer revieweden
dc.date.embargoedUntil2022-05-10


This item appears in the following Collection(s)

Show simple item record