St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Potential vorticity fronts and the late-time evolution of large-scale quasi-geostrophic flows

Thumbnail
View/Open
Burgess_2022_Potential_vorticity_fronts_JFM_939_A40_CCBY.pdf (1.211Mb)
Date
25/05/2022
Author
Burgess, B. H.
Dritschel, David Gerard
Funder
The Leverhulme Trust
Grant ID
ECF-2017-508
Keywords
Geostrophic turbulence
Quasi-geostrophic flows
Shallow water flows
GE Environmental Sciences
QA Mathematics
QC Physics
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The late-time behaviour of freely evolving quasi-geostrophic flows with initial characteristic length scale L0 larger than or equal to the deformation radius LD, L0/LD≥1 , is studied. At late time the flows are dominated by large multi-level vortices consisting of ascending terraces of well-mixed potential vorticity (PV), i.e. PV staircases. We examine how the number of mixed PV levels depends on the initial conditions, in particular L0/LD . For sufficiently large values of L0/LD≈5 , a complete staircase with regular steps forms, but as L0/LD decreases, the staircase becomes more irregular, with fewer mixed levels and the appearance of a large step centred on zero PV, corresponding to large regions of near-zero PV separating the multi-level vortices. This occurs because weak PV features in the initial field with scales smaller than LD undergo filamentation and are coarse-grained away or homogenised. For all values of L0/LD considered, inverse cascades of potential energy commence at sufficiently late times. The onset of these cascades, even when the flow is initialised well within the ‘asymptotic model’ (AM) regime, suggests that the AM regime is not self-consistent: when potential vorticity fronts are well-resolved, frontal dynamics eventually drive ongoing flow evolution.
Citation
Burgess , B H & Dritschel , D G 2022 , ' Potential vorticity fronts and the late-time evolution of large-scale quasi-geostrophic flows ' , Journal of Fluid Mechanics , vol. 939 , A40 . https://doi.org/10.1017/jfm.2022.194
Publication
Journal of Fluid Mechanics
Status
Peer reviewed
DOI
https://doi.org/10.1017/jfm.2022.194
ISSN
0022-1120
Type
Journal article
Rights
Copyright © The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
Funding: BHB acknowledges support for this research from a Leverhulme Trust Early Career Fellowship.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25314

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter