St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes : identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

Thumbnail
View/Open
Price_SupplInfo_JMCA.pdf (242.3Kb)
Price_2021_JMCA_Durability_AAM.pdf (2.387Mb)
Date
28/04/2021
Author
Price, Robert
Weissen, Ueli
Grolig, Jan G.
Cassidy, Mark
Mai, Andreas
Irvine, John T. S.
Funder
EPSRC
EPSRC
Grant ID
EP/M014304/1
ep/l017008/1
Keywords
QD Chemistry
E-NDAS
Metadata
Show full item record
Abstract
Solid oxide fuel cells (SOFC) comprising LSM-YSZ/LSM composite cathodes, 6ScSZ electrolytes and La0.20Sr0.25Ca0.45TiO3 (LSCTA−) anode ‘backbone’ microstructures were prepared using thick-film ceramic processing techniques. Activation and decoration of the LSCTA− anode ‘backbone’ with electrocatalytic coatings of cerium-based oxides and metallic Ni or Pt particles was achieved using the technique of catalyst co-impregnation. SOFC containing Ni/CGO, Ni/CeO2 and Pt/CGO impregnated LSCTA anodes were tested up to ∼1000 hours by the Swiss SOFC manufacturer: HEXIS, under realistic operating conditions, including 15 redox, thermo and thermoredox cycles. The voltage degradation rates observed over the entire test period for the SOFC containing the Ni/CGO, Ni/CeO2 and Pt/CGO impregnated LSCTA− anodes were 14.9%, 7.7% and 13.4%, respectively. Post-mortem microscopic analyses indicated that CeO2 formed ubiquitous coatings upon the LSCTA− anode microstructure, allowing retention of a high population density of metallic (Ni) particles, whilst CGO formed ‘islands’ upon the microstructure and some agglomerates within the pores, leading to more facile agglomeration of metallic (Ni and Pt) nanoparticles. Correlation of the post-mortem microscopy with AC impedance analysis revealed that the agglomeration of metallic catalyst resulted in an increase in the high-frequency anode polarisation resistance, whilst agglomeration of the ceria-based component directly resulted in the development of a low-frequency process that may be attributed to combined contributions from gas conversion and chemical capacitance.
Citation
Price , R , Weissen , U , Grolig , J G , Cassidy , M , Mai , A & Irvine , J T S 2021 , ' Durability of La 0.20 Sr 0.25 Ca 0.45 TiO 3- based SOFC anodes : identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures ' , Journal of Materials Chemistry A , vol. 9 , no. 16 , pp. 10404-10418 . https://doi.org/10.1039/d1ta00416f
Publication
Journal of Materials Chemistry A
Status
Peer reviewed
DOI
https://doi.org/10.1039/d1ta00416f
ISSN
2050-7488
Type
Journal article
Rights
Copyright © 2021 The Author(s). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1039/D1TA00416F
Description
Funding from the University of St Andrews and HEXIS AG is acknowledged, in addition to the EPSRC Grants: EP/M014304/1 “Tailoring of Microstructural Evolution in Impregnated SOFC Electrodes” and EP/L017008/1 “Capital for Great Technologies”.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25160

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter