Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLinnell, Stephanie
dc.contributor.authorKim, Eun Jeong
dc.contributor.authorChoi, Yong-Seok
dc.contributor.authorHirsbrunner, Moritz
dc.contributor.authorImada, Saki
dc.contributor.authorPramanik, Atin
dc.contributor.authorFuente Cuesta, Aida
dc.contributor.authorMiller, David
dc.contributor.authorFusco, Edoardo
dc.contributor.authorBode, Bela E
dc.contributor.authorIrvine, John
dc.contributor.authorDuda, Laurent
dc.contributor.authorScanlon, David O.
dc.contributor.authorArmstrong, Anthony Robert
dc.date.accessioned2022-04-06T16:30:05Z
dc.date.available2022-04-06T16:30:05Z
dc.date.issued2022-05-14
dc.identifier278648522
dc.identifierababa6aa-56aa-4632-9479-10b134e4802c
dc.identifier000778357300001
dc.identifier85129286995
dc.identifier.citationLinnell , S , Kim , E J , Choi , Y-S , Hirsbrunner , M , Imada , S , Pramanik , A , Fuente Cuesta , A , Miller , D , Fusco , E , Bode , B E , Irvine , J , Duda , L , Scanlon , D O & Armstrong , A R 2022 , ' Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na 4/7 [□ 1/7 Ti 1/7 Mn 5/7 ]O 2 in sodium-ion batteries ' , Journal of Materials Chemistry A , vol. 10 , no. 18 , pp. 9941-9953 . https://doi.org/10.1039/D2TA01485Hen
dc.identifier.issn2050-7488
dc.identifier.otherRIS: urn:F5B3FB1FA09B9FDF4160475E844D8B35
dc.identifier.otherORCID: /0000-0002-8394-3359/work/111209997
dc.identifier.otherORCID: /0000-0003-1937-0936/work/111210007
dc.identifier.otherORCID: /0000-0002-3384-271X/work/111210145
dc.identifier.otherORCID: /0000-0002-8462-2514/work/111210310
dc.identifier.urihttps://hdl.handle.net/10023/25150
dc.descriptionL. D. gratefully acknowledges financial support from the Swedish Energy Agency (contract 2020-005246). Y.C. and D.O.S. are grateful to the Faraday Institution for funding the MICHAEL computing cluster hosted at University College London (UCL). Our membership of the UKs HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202, EP/R029431), this work used the ARCHER2 UK National Supercomputing Service(http://www.archer2.ac.uk). We are also grateful to the UK Materials and Molecular Modelling Hub for computational resources, which is partially funded by EPSRC (EP/P020194/1 and EP/T022213/1). We are grateful to the Engineering and Physical Sciences Research Council (EPSRC) Light Element Facility Grant (EP/T019298/1) for funding the acquisition of the Raman spectrometer. EF is grateful for an EaStCHEM studentship. This work was supported by the Faraday Institution (grant number FIRG018).en
dc.description.abstractAnion redox reactions offer a means of enhancing the capacity of layered sodium transition metal oxide positive electrode materials. However, oxygen redox reactions typically show limited reversibility and irreversible structural changes upon cycling, resulting in rapid capacity loss. Here, the Ti substituted Na4/7[□1/7Ti1/7Mn5/7]O2 (where □ represents a transition metal vacancy) is presented as a positive electrode material for sodium ion batteries. Na4/7[□1/7Ti1/7Mn5/7]O2 delivers a reversible capacity of 167 mAh g -1 after 25 cycles at 10 mA g -1 within the voltage range of 1.6 – 4.4 V and presents enhanced stability compared with Na4/7[□1/7Mn6/7]O2 over the voltage range 3.0 – 4.4 V. The structural and electronic structural changes of this Ti4+ substituted phase are investigated by powder X-ray diffraction, X ray absorption spectroscopy, electron paramagnetic resonance and Raman spectroscopy, supported by density functional theory calculations. These results show that the Na4/7[□1/7Mn6/7]O2 structure is maintained between 3.0 – 4.4 V, and the presence of TiO6 octahedra in Na4/7[□1/7Ti1/7Mn5/7]O2 relieves structural distortions from Jahn Teller distorted Mn3+O6 between 1.6 – 4.4 V. Furthermore, Ti4+ substitution stabilises the adjacent O 2p orbitals and raises the ionicity of the Mn O bonds, increasing the operating potential of Na4/7[□1/7Ti1/7Mn5/7]O2. Thereby providing evidence that the improved electrochemical performance of Na4/7[□1/7Ti1/7Mn5/7]O2 can be attributed to Ti4+ substitution. This work provides insight and strategies for improving the structural stability and electrochemical performance of sodium layered oxides.
dc.format.extent1918123
dc.language.isoeng
dc.relation.ispartofJournal of Materials Chemistry Aen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subject.lccQDen
dc.titleEnhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in sodium-ion batteriesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. Centre of Magnetic Resonanceen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.identifier.doi10.1039/D2TA01485H
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/T019298/1en


This item appears in the following Collection(s)

Show simple item record