Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorAhmed, Mohamed
dc.contributor.authorRodley, David
dc.contributor.authorJones, Thomas D.A.
dc.contributor.authorAbdolvand, Amin
dc.contributor.authorLightfoot, Alison E.
dc.contributor.authorFrüchtl, Herbert
dc.contributor.authorBaker, Richard T.
dc.date.accessioned2022-03-24T16:30:02Z
dc.date.available2022-03-24T16:30:02Z
dc.date.issued2021-07-18
dc.identifier275515439
dc.identifiera0a3c973-c225-420c-af96-ea3abbcd8b0e
dc.identifier85111639363
dc.identifier.citationAhmed , M , Rodley , D , Jones , T D A , Abdolvand , A , Lightfoot , A E , Früchtl , H & Baker , R T 2021 , Computational modelling of ceria-based solid oxide fuel cell electrolyte materials . in 17th International Symposium on Solid Oxide Fuel Cells, SOFC 2021 . ECS Transactions , no. 1 , vol. 103 , IOP Publishing Ltd. , pp. 931-947 , 17th International Symposium on Solid Oxide Fuel Cells , 18/07/21 . https://doi.org/10.1149/10301.0931ecsten
dc.identifier.citationconferenceen
dc.identifier.isbn9781607685395
dc.identifier.issn1938-6737
dc.identifier.otherORCID: /0000-0001-6647-4266/work/98785470
dc.identifier.otherORCID: /0000-0002-3304-3280/work/98785556
dc.identifier.urihttps://hdl.handle.net/10023/25098
dc.description.abstractA simulation methodology for calculating the lattice parameter and oxygen ion migration energy of ceria-based electrolyte formulations is devised. The results are analysed and benchmarked against experimentally obtained values to verify the efficacy of the simulation methodology. A total of 26, 2 x 2 x 2 samarium (Sm)- and gadolinium (Gd)-doped supercells of different compositions and doping profiles were modelled and simulated by molecular mechanics force field methods using CP2K. The results of the computational simulations are comparable with those obtained experimentally, especially when there are equal amounts of Sm and Gd dopants in the structure. Simulation results can also provide insights into the mechanisms of ionic conduction. The incongruence of the computational and experimental results is attributed to the limitations of the molecular mechanics force field methodology utilised, with the expectation that an ab initio density functional theory (DFT) calculation would yield closer conformance.
dc.format.extent17
dc.format.extent1388892
dc.language.isoeng
dc.publisherIOP Publishing Ltd.
dc.relation.ispartof17th International Symposium on Solid Oxide Fuel Cells, SOFC 2021en
dc.relation.ispartofseriesECS Transactionsen
dc.subjectQD Chemistryen
dc.subjectEngineering(all)en
dc.subject3rd-DASen
dc.subjectACen
dc.subject.lccQDen
dc.titleComputational modelling of ceria-based solid oxide fuel cell electrolyte materialsen
dc.typeConference itemen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. St Andrews Sustainability Instituteen
dc.identifier.doi10.1149/10301.0931ecst
dc.identifier.urlhttps://discovery.dundee.ac.uk/en/publications/computational-modelling-of-ceria-based-solid-oxide-fuel-cell-elecen


This item appears in the following Collection(s)

Show simple item record