Show simple item record

Files in this item


Item metadata

dc.contributor.authorTian, Yunfeng
dc.contributor.authorWang, Wenjie
dc.contributor.authorLiu, Yun
dc.contributor.authorNaden, Aaron
dc.contributor.authorXu, Min
dc.contributor.authorWu, Shitao
dc.contributor.authorChi, Bo
dc.contributor.authorPu, Jian
dc.contributor.authorIrvine, John T. S.
dc.identifier.citationTian , Y , Wang , W , Liu , Y , Naden , A , Xu , M , Wu , S , Chi , B , Pu , J & Irvine , J T S 2021 , ' Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells ' , ACS Catalysis , vol. 11 , no. 6 , pp. 3704-3714 .
dc.identifier.otherPURE: 273498715
dc.identifier.otherPURE UUID: 18e989dd-c565-4cd5-a1fa-464e42506077
dc.identifier.otherJisc: 0c4745b4697c4e71b5d41ca02b935dc5
dc.identifier.otherORCID: /0000-0002-8394-3359/work/91340754
dc.identifier.otherScopus: 85103499599
dc.identifier.otherWOS: 000631434600045
dc.identifier.otherORCID: /0000-0003-2876-6991/work/110912168
dc.descriptionWe greatly appreciate the financial support from the National Key Research & Development Project (2020YFB1506304, 2017YFE0129300), National Natural Science Foundation of China (52072135), and China Scholarship Council (201806160178).en
dc.description.abstractThe oxygen electrode with a fast oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and sufficient durability plays a pivotal role in reversible solid oxide cells (RSOCs). Here, we demonstrate a NdBa0.5Ca0.5Co1.5Fe0.5O5+δ@Gd0.1Ce0.9O2−δ (NBCCF@GDC) composite oxygen electrode via a one-pot method for exhibiting strong coherency, which result in boosting the electrochemical performance of RSOCs. The NBCCF@GDC electrode yields a very low polarization resistance (0.106 Ω-cm2 at 800 °C), high electrolysis current density (1.45 A cm–2 with 70 vol % absolute humidity at 1.3 V), and high power density (∼1.3 W cm–2 at 800 °C) and shows excellent reversibility and stability. Notably, strong coherency in these NBCCF@GDC composite materials was successfully revealed by HT-XRD, XPS, STEM, and EELS. The phase contiguity and interfacial coherence between NBCCF and GDC increase the Co oxidation state and the number of active sites, which enhanced the electrocatalytic activity for perovskites. Overall, this work demonstrates a highly desirable strategy for the production of functionalized electrodes for next-generation reversible solid oxide cells.
dc.relation.ispartofACS Catalysisen
dc.rightsCopyright © 2021 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at
dc.subjectOne-pot methoden
dc.subjectOxygen electrodeen
dc.subjectNBCCF@GDC compositeen
dc.subjectReversible solid oxide cellsen
dc.subjectStrong coherencyen
dc.subjectQD Chemistryen
dc.titleAchieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cellsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record