Dyke architecture, mineral layering, and magmatic convection; new perspectives from the Younger Giant Dyke Complex, S Greenland
Date
01/03/2022Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Igneous sheet intrusions are a fundamental component of volcano plumbing systems. Identifying how sheet intrusion emplacement and geometry controls later magmatic processes is critical to understanding the distribution of volcanic eruptions and magma-related ore deposits. Using the Younger Giant Dyke Complex, a Mesoproterozoic suite of large (< 800 m wide) mafic dykes in southern Greenland, we assess the influence sheet of emplacement and geometry on subsequent magma flow and mush evolution. Through structural mapping, petrographic observations, and anisotropy of magnetic susceptibility fabric analyses, we show that the Younger Giant Dyke Complex was emplaced as a series of individual dyke segments, which following coalescence into a sheet intrusion remained largely isolated during their magmatic evolution. Through petrographic evidence for liquid-rich growth of cumulus phases, concentric magnetic fabrics, and the detailed study layered zones within the Younger Giant Dyke Complex, we infer magma convection occurred within the cores of each dyke element. We particularly relate layering to hydrodynamic sorting processes at a magma-mush boundary towards the base of each convection cell. Overall, our work demonstrates that the initial geometry of sheet intrusions can constrain magma flow patterns and affect the distribution of crystallisation regimes.
Citation
Koopmans , L , McCarthy , W & Magee , C 2022 , ' Dyke architecture, mineral layering, and magmatic convection; new perspectives from the Younger Giant Dyke Complex, S Greenland ' , Geochemistry, Geophysics, Geosystems , vol. 23 , no. 3 , e2021GC010260 . https://doi.org/10.1029/2021GC010260
Publication
Geochemistry, Geophysics, Geosystems
Status
Peer reviewed
ISSN
1525-2027Type
Journal article
Rights
Copyright © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Description
The expedition was funded by the Mining Institute of Scotland Trust, the Institute of Materials, Minerals and Mining, the Society of Economic Geologists Hickok-Radford Fund, the Edinburgh Geological Society, the Augustine Courtauld trust and the Scott Polar Research Institute.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.