St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Do s genes or deleterious recessives control late-acting self-incompatibility in Handroanthus heptaphyllus (Bignoniaceae)? A diallel study with four full sib progeny arrays

Thumbnail
View/Open
Bianchi_2021_AB_Sgenes_AAM.pdf (1.798Mb)
Date
07/05/2021
Author
Bianchi, Marta B.
Meagher, Thomas Robert
Gibbs, Peter Edward
Keywords
Full sib diallel crosses
Handroanthus heptaphyllus (Bignoniaceae)
late-acting self-incompatibility
QK Botany
DAS
Metadata
Show full item record
Abstract
Background and Aims Genetically controlled self-incompatibility (SI) mechanisms constrain selfing and thus have contributed to the evolutionary diversity of flowering plants. In homomorphic gametophytic SI (GSI) and homomorphic sporophytic SI (SSI), genetic control is usually by a single multi-allelic locus S. Both GSI and SSI prevent self pollen tubes reaching the ovary and so are pre-zygotic in action. In contrast, in taxa with late-acting self-incompatibility (LSI), rejection is often post-zygotic, since self-pollen tubes grow to the ovary where fertilization may occur prior to floral abscission. Alternatively, lack of self fruit set could be due to early-acting inbreeding depression (EID). The aim of our study was to investigate mechanisms underlying lack of selfed fruit set in Handroanthus heptaphyllus in order to assess the likelihood of LSI versus EID. Methods We employed four full sib diallels to study the genetic control of LSI in Handroanthus heptaphyllus using a precociously flowering variant. We also used fluorescence microscopy to study the incidence of ovule penetration by pollen tubes in pistils that abscised following pollination or initiated fruits. Key Results All diallels showed reciprocally cross-incompatible full-sibs (RCI), reciprocally cross compatible full-sibs (RCC), and non-reciprocally compatible full-sibs (NRC) in almost equal proportions. There was no significant difference between the incidence of ovule penetrations in abscised pistils following self- and cross-incompatible pollinations, but those in successful cross pollinations were around twofold greater. Conclusions A genetic model postulating a single S locus with four s alleles, one of which, in the maternal parent, is dominant to the other three, will produce RCI, RCC and NRC situations each at 33 %, consistent with our diallel results. We favour this simple genetic control over an early-acting inbreeding depression (EID) explanation since none of our pollinations, successful or unsuccessful, resulted in partial embryo development, as would be expected under a whole genome EID effect.
Citation
Bianchi , M B , Meagher , T R & Gibbs , P E 2021 , ' Do s genes or deleterious recessives control late-acting self-incompatibility in Handroanthus heptaphyllus (Bignoniaceae)? A diallel study with four full sib progeny arrays ' , Annals of Botany , vol. 127 , no. 6 , mcab031 , pp. 723–736 . https://doi.org/10.1093/aob/mcab031
Publication
Annals of Botany
Status
Peer reviewed
DOI
https://doi.org/10.1093/aob/mcab031
ISSN
0305-7364
Type
Journal article
Rights
Copyright © The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1093/aob/mcab031
Description
MBB thanks the Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR) for financial support.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/24928

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter