St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

How transverse waves drive turbulence in the solar corona

Thumbnail
View/Open
Howson_2022_Symmetry_Transversewaves_CC.pdf (2.915Mb)
Date
15/02/2022
Author
Howson, Thomas
Funder
European Research Council
Grant ID
647214
Keywords
MHD oscillations
Coronal heating
MHD turbulence
QA Mathematics
QB Astronomy
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Oscillatory power is pervasive throughout the solar corona, and magnetohydrodynamic (MHD) waves may carry a significant energy flux throughout the Sun’s atmosphere. As a result, over much of the past century, these waves have attracted great interest in the context of the coronal heating problem. They are a potential source of the energy required to maintain the high-temperature plasma and may accelerate the fast solar wind. Despite many observations of coronal waves, large uncertainties inhibit reliable estimates of their exact energy flux, and as such, it remains unclear whether they can contribute significantly to the coronal energy budget. A related issue concerns whether the wave energy can be dissipated over sufficiently short time scales to balance the atmospheric losses. For typical coronal parameters, energy dissipation rates are very low and, thus, any heating model must efficiently generate very small-length scales. As such, MHD turbulence is a promising plasma phenomenon for dissipating large quantities of energy quickly and over a large volume. In recent years, with advances in computational and observational power, much research has highlighted how MHD waves can drive complex turbulent behaviour in the solar corona. In this review, we present recent results that illuminate the energetics of these oscillatory processes and discuss how transverse waves may cause instability and turbulence in the Sun’s atmosphere.
Citation
Howson , T 2022 , ' How transverse waves drive turbulence in the solar corona ' , Symmetry , vol. 14 , no. 2 , 384 . https://doi.org/10.3390/sym14020384
Publication
Symmetry
Status
Peer reviewed
DOI
https://doi.org/10.3390/sym14020384
ISSN
2073-8994
Type
Journal item
Rights
Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).
Description
Funding: This research was funded by the European Research Council grant number 647214.
Collections
  • University of St Andrews Research
URL
https://www.mdpi.com/2073-8994/14/2/384
URI
http://hdl.handle.net/10023/24889

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter