St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of fermion indistinguishability on optical absorption of doped two-dimensional semiconductors

Thumbnail
View/Open
2109.12994v1.pdf (950.5Kb)
Tiene_2022_Effect_of_fermion_PRB_AAM.pdf (1002.Kb)
Date
15/03/2022
Author
Tiene, A.
Levinsen, J.
Keeling, J.
Parish, M. M.
Marchetti, F. M.
Funder
EPSRC
Grant ID
EP/M025330/1
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
DAS
MCC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We study the optical absorption spectrum of a doped two-dimensional semiconductor in the spin-valley polarized limit. In this configuration, the carriers in the Fermi sea are indistinguishable from one of the two carriers forming the exciton. Most notably, this indistinguishability requires the three-body trion state to have p-wave symmetry. To explore the consequences of this, we evaluate the system's optical properties within a polaron description, which can interpolate from the low-density limit, where the relevant excitations are few-body bound states, to higher-density many-body states. In the parameter regime where the trion is bound, we demonstrate that the spectrum is characterized by an attractive quasiparticle branch, a repulsive branch, and a many-body continuum, and we evaluate the doping dependence of the corresponding energies and spectral weights. In particular, at low doping we find that the oscillator strength of the attractive branch scales with the square of the Fermi energy as a result of the trion's p-wave symmetry. Upon increasing density, we find that the orbital character of the states associated with these branches interchanges. We compare our results with previous investigations of the scenario where the Fermi sea involves carriers distinguishable from those in the exciton, for which the trion ground state is s wave.
Citation
Tiene , A , Levinsen , J , Keeling , J , Parish , M M & Marchetti , F M 2022 , ' Effect of fermion indistinguishability on optical absorption of doped two-dimensional semiconductors ' , Physical Review. B, Condensed matter and materials physics , vol. 105 , no. 12 , 125404 . https://doi.org/10.1103/PhysRevB.105.125404
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevB.105.125404
ISSN
1098-0121
Type
Journal article
Rights
Copyright © 2022 American Physical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1103/PhysRevB.105.125404.
Description
Funding: AT and FMM acknowledge financial support from the Ministerio de Ciencia e Innovación (MICINN), projects No. AEI/10.13039/501100011033 (2DEnLight) and No. MAT2017-83772-R (QLMC-2D). FMM acknowledges financial support from the Proyecto Sinérgico CAM 2020 Y2020/TCS-6545 (NanoQuCo-CM). JL and MMP acknowledge support from the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies (CE170100039). JL and MMP are also supported through the Australian Research Council Future Fellowships FT160100244 and FT200100619, respectively. JK acknowledges financial support from EPSRC program “Hybrid Polaritonics” (EP/M025330/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/24870

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter