Show simple item record

Files in this item

Thumbnail
Thumbnail

Item metadata

dc.contributor.authorGeorgieva, Veselina Mihaylova
dc.contributor.authorBruce, Elliott Leigh
dc.contributor.authorChitac, Ruxandra Georgiana
dc.contributor.authorLozinska, Magdalena Malgorzata
dc.contributor.authorHall, Anna
dc.contributor.authorMurray, Claire
dc.contributor.authorSmith, Ronald
dc.contributor.authorTurrina, Alessandro
dc.contributor.authorWright, Paul Anthony
dc.date.accessioned2022-02-10T00:41:39Z
dc.date.available2022-02-10T00:41:39Z
dc.date.issued2021-02-10
dc.identifier272936325
dc.identifier4f8243b6-8808-4575-829e-8afb57d80cff
dc.identifier000623043600007
dc.identifier85101593789
dc.identifier.citationGeorgieva , V M , Bruce , E L , Chitac , R G , Lozinska , M M , Hall , A , Murray , C , Smith , R , Turrina , A & Wright , P A 2021 , ' Cation control of cooperative CO 2 adsorption in Li-containing mixed cation forms of the flexible zeolite merlinoite ' , Chemistry of Materials , vol. Articles ASAP . https://doi.org/10.1021/acs.chemmater.0c03773en
dc.identifier.issn0897-4756
dc.identifier.otherORCID: /0000-0002-4243-9957/work/89178174
dc.identifier.urihttps://hdl.handle.net/10023/24842
dc.descriptionThe authors thank the EPSRC for funding (Cation-Controlled Gating for Selective Gas Adsorption over Adaptable Zeolites: EP/N032942/1, V.M.G., P.A.W. and an NPIF Ph.D. scholarship for E.L.B.: EP/R512199/1). We acknowledge Diamond Light Source for time on Beamline I11 under Proposal CY22322-1. Experiments at the ISIS Neutron and Muon Source were supported by a beamtime allocation RB2090052-1 from the Science and Technology Facilities Council. The raw data accompanying this publication are directly available at https://doi.org/10.17630/cac904b4-3c07-4159-913f80ff53b13bb7 [reference 59] and, for the neutron powder diffraction data, https://doi.org/10.5286/ISIS.E.RB2090052-1en
dc.description.abstractThe lithium-exchanged form of a merlinoite zeolite (MER) with Si/Al = 4.2 (unit cell composition Li6.2Al6.2Si25.8O64) possesses a strongly contracted framework when dehydrated (the unit cell volume decreases by 12.9% from the hydrated ‘wide-pore’ form to the dehydrated ‘narrow-pore’ form). It shows cooperative adsorption behaviour for CO2, leading to two-step isotherms with the second step at elevated pressure (>2.5 bar at 298 K). Partially exchanging Na and K cations to give single phase Li,Na- and Li,K-MER materials reduces the pressure of this second adsorption step because the transition from narrow- to wide-pore forms upon CO2 adsorption occurs at lower partial pressures compared to that in Li-MER: partial exchange with Cs does not reduce the pressure of this transition. Exsolution effects are also seen at K cation contents >2.2 per unit cell. The phase transitions proceed via intermediate structures, by complex phase behaviour rarely seen for zeolitic materials. The strongly distorted narrow-pore structures adopted upon dehydration give one dimensional channel structures in which the percolation of CO2 through the material requires cation migration from their locations in ste sites. This is slow in Li3.4Cs2.8-MER where Cs cations occupy these critical ste cavities in the channels, causing very slow adsorption kinetics. As the partial pressure of CO2 increases, a threshold pressure is reached where cooperative adsorption and Cs cation migration occur and the wide-pore form results, with a three dimensionally connected pore system, leading to a sharp increase in uptake. This is far in excess of the increase of unit cell volume because more of the pore space becomes accessible. Strong hysteretic effects occur upon desorption, leading to CO2 encapsulation. CO2 remaining within the material after repeated adsorption/desorption cycles without heated activation improves sorption kinetics and modifies the stepped isotherms.
dc.format.extent6975171
dc.format.extent3835561
dc.language.isoeng
dc.relation.ispartofChemistry of Materialsen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subject.lccQDen
dc.titleCation control of cooperative CO2 adsorption in Li-containing mixed cation forms of the flexible zeolite merlinoiteen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.identifier.doi10.1021/acs.chemmater.0c03773
dc.description.statusPeer revieweden
dc.date.embargoedUntil2022-02-10
dc.identifier.grantnumberEP/N032942/1en


This item appears in the following Collection(s)

Show simple item record