St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen

Thumbnail
View/Open
Meixnerova_etal_2021_Mercury_isotopes_AAM.pdf (1.080Mb)
Date
17/08/2021
Author
Meixnerová, Jana
Blum, Joel D.
Johnson, Marcus W.
Stüeken, Eva E.
Kipp, Michael A.
Anbar, Ariel D.
Buick, Roger
Keywords
Archean
Atmospheric oxygenation
Mercury isotopes
GE Environmental Sciences
I-PW
AC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Earth’s early atmosphere witnessed multiple transient episodes of oxygenation before the Great Oxidation Event 2.4 billion years ago (Ga) [e.g., A. D. Anbar et al., Science 317, 1903–1906 (2007); M. C. Koehler, R. Buick, M. E. Barley, Precambrian Res. 320, 281–290 (2019)], but the triggers for these short-lived events are so far unknown. Here, we use mercury (Hg) abundance and stable isotope composition to investigate atmospheric evolution and its driving mechanisms across the well-studied “whiff” of O2 recorded in the ∼2.5-Ga Mt. McRae Shale from the Pilbara Craton in Western Australia [A. D. Anbar et al., Science 317, 1903–1906 (2007)]. Our data from the oxygenated interval show strong Hg enrichment paired with slightly negative Δ199Hg and near-zero Δ200Hg, suggestive of increased oxidative weathering. In contrast, slightly older beds, which were evidently deposited under an anoxic atmosphere in ferruginous waters [C. T. Reinhard, R. Raiswell, C. Scott, A. D. Anbar, T. W. Lyons, Science 326, 713–716 (2009)], show Hg enrichment coupled with positive Δ199Hg and slightly negative Δ200Hg values. This pattern is consistent with photochemical reactions associated with subaerial volcanism under intense UV radiation. Our results therefore suggest that the whiff of O2 was preceded by subaerial volcanism. The transient interval of O2 accumulation may thus have been triggered by diminished volcanic O2 sinks, followed by enhanced nutrient supply to the ocean from weathering of volcanic rocks causing increased biological productivity.
Citation
Meixnerová , J , Blum , J D , Johnson , M W , Stüeken , E E , Kipp , M A , Anbar , A D & Buick , R 2021 , ' Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen ' , Proceedings of the National Academy of Sciences of the United States of America , vol. 118 , no. 33 , e2107511118 . https://doi.org/10.1073/pnas.2107511118
Publication
Proceedings of the National Academy of Sciences of the United States of America
Status
Peer reviewed
DOI
https://doi.org/10.1073/pnas.2107511118
ISSN
0027-8424
Type
Journal article
Rights
Copyright © 2021 The Author(s). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1073/pnas.2107511118
Description
Funding: This study was supported by National Aeronautics and Space Administration Exobiology Grant NNX16AI37G (R.B.) and by the MacArthur Professorship (J.D.B.) at the University of Michigan. M.A.K. acknowledges support from an Agouron Institute postdoctoral fellowship.
Collections
  • University of St Andrews Research
URL
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2107511118/-/DCSupplemental
URI
http://hdl.handle.net/10023/24830

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter