St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Loss engineered slow light waveguides

Thumbnail
View/Open
OFaolainetal2010OOpticsExpress18LossEngineered.pdf (1.280Mb)
Date
20/12/2010
Author
O'Faolain, Liam
Schulz, Sebastian Andreas
Beggs, Daryl Matthew
White, Tom P
Spasenovic, M.
Kuipers, L.
Morichetti, F.
Melloni, A.
Mazoyer, S.
Hugonin, J. P.
Lalanne, P.
Krauss, Thomas Fraser
Funder
EPSRC
European Commission
Grant ID
EP/F001622/1
IST-FP6-033651
Keywords
Photonic crystals
Pulse-compression
Silicon
Ultracompact
Enhancement
Conversion
Bandwidth
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Slow light devices such as photonic crystal waveguides (PhCW) and coupled resonator optical waveguides (CROW) have much promise for optical signal processing applications and a number of successful demonstrations underpinning this promise have already been made. Most of these applications are limited by propagation losses, especially for higher group indices. These losses are caused by technological imperfections ("extrinsic loss") that cause scattering of light from the waveguide mode. The relationship between this loss and the group velocity is complex and until now has not been fully understood. Here, we present a comprehensive explanation of the extrinsic loss mechanisms in PhC waveguides and address some misconceptions surrounding loss and slow light that have arisen in recent years. We develop a theoretical model that accurately describes the loss spectra of PhC waveguides. One of the key insights of the model is that the entire hole contributes coherently to the scattering process, in contrast to previous models that added up the scattering from short sections incoherently. As a result, we have already realised waveguides with significantly lower losses than comparable photonic crystal waveguides as well as achieving propagation losses, in units of loss per unit time (dB/ns) that are even lower than those of state-of-the-art coupled resonator optical waveguides based on silicon photonic wires. The model will enable more advanced designs with further loss reduction within existing technological constraints. (C) 2010 Optical Society of America
Citation
O'Faolain , L , Schulz , S A , Beggs , D M , White , T P , Spasenovic , M , Kuipers , L , Morichetti , F , Melloni , A , Mazoyer , S , Hugonin , J P , Lalanne , P & Krauss , T F 2010 , ' Loss engineered slow light waveguides ' , Optics Express , vol. 18 , no. 26 , pp. 27627-27638 . https://doi.org/10.1364/OE.18.027627
Publication
Optics Express
Status
Peer reviewed
DOI
https://doi.org/10.1364/OE.18.027627
ISSN
1094-4087
Type
Journal article
Rights
(c) 2010 OSA. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27627
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/2482

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter