Show simple item record

Files in this item


Item metadata

dc.contributor.authorTorres-Aguila, Nuria P.
dc.contributor.authorSalonna, Marika
dc.contributor.authorHoppler, Stefan
dc.contributor.authorFerrier, David E.K.
dc.identifier.citationTorres-Aguila , N P , Salonna , M , Hoppler , S & Ferrier , D E K 2022 , ' Evolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordates ' , Development, Growth & Differentiation , vol. 64 , no. 3 , pp. 120-137 .
dc.identifier.otherPURE: 277539108
dc.identifier.otherPURE UUID: d042bbda-7129-434c-b229-8f263e3ee65b
dc.identifier.otherRIS: urn:B1014A48B805815F4C2C811FD06EA0D4
dc.identifier.otherORCID: /0000-0003-3247-6233/work/107717976
dc.identifier.otherORCID: /0000-0002-9502-9310/work/107718388
dc.identifier.otherScopus: 85124098501
dc.identifier.otherWOS: 000750480500001
dc.descriptionThis work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), linked projects, references BB/S016856/1 and BB/S020640/1.en
dc.description.abstractWnt signaling is essential during animal development and regeneration, but also plays an important role in diseases such as cancer and diabetes. The canonical Wnt signaling pathway is one of the most conserved signaling cascades in the animal kingdom, with the T-cell factor/lymphoid enhancer factor (TCF/LEF) proteins the major mediators of Wnt/β-catenin-regulated gene expression. In comparison to invertebrates, vertebrates possess a high diversity of TCF/LEF family genes, implicating this as a possible key change to Wnt signaling at the evolutionary origin of vertebrates. However, the precise nature of this diversification is only poorly understood. The aim of this study is to clarify orthology, paralogy and isoform relationships within the TCF/LEF gene family within chordates via in silico comparative study of TCF/LEF gene structure, molecular phylogeny and gene synteny. Our results support the notion that the four TCF/LEF paralog subfamilies in jawed vertebrates (gnathostomes) evolved via the two rounds of whole-genome duplication that occurred during early vertebrate evolution. Importantly, gene structure comparisons and synteny analysis of jawless vertebrate (cyclostome) TCFs suggest that a TCF7L2-like form of gene structure is a close proxy for the ancestral vertebrate structure. In conclusion, we propose a detailed evolutionary path based on a new pre-whole-genome duplication vertebrate TCF gene model. This ancestor gene model highlights the chordate and vertebrate innovations of TCF/LEF gene structure, providing the foundation for understanding the role of Wnt/β-catenin signaling in vertebrate evolution.
dc.relation.ispartofDevelopment, Growth & Differentiationen
dc.rightsCopyright © 2022 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.subjectComparative genomicsen
dc.subjectQH301 Biologyen
dc.titleEvolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordatesen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.contributor.institutionUniversity of St Andrews. St Andrews Bioinformatics Uniten
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record