St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection of ongoing mass loss from HD 63433c, a young mini-Neptune

Thumbnail
View/Open
Zhang_2022_AJ_Detection_ongoing_mass_loss_CC.pdf (2.144Mb)
Date
01/02/2022
Author
Zhang, Michael
Knutson, Heather A.
Wang, Lile
Dai, Fei
dos Santos, Leonardo A.
Fossati, Luca
Henry, Gregory W.
Ehrenreich, David
Alibert, Yann
Hoyer, Sergio
Wilson, Thomas G.
Bonfanti, Andrea
Funder
Science & Technology Facilities Council
Grant ID
ST/R00824/1
Keywords
The Solar System
Astrobiology
Exoplanets
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We detect Lyα absorption from the escaping atmosphere of HD 63433c, a R = 2.67R⊕, P = 20.5 day mini-Neptune orbiting a young (440 Myr) solar analog in the Ursa Major Moving Group. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph, we measure a transit depth of 11.1 ± 1.5% in the blue wing and 8 ± 3% in the red. This signal is unlikely to be due to stellar variability, but should be confirmed by an upcoming second transit observation with HST. We do not detect Lyα absorption from the inner planet, a smaller R = 2.15R⊕ mini-Neptune on a 7.1 day orbit. We use Keck/NIRSPEC to place an upper limit of 0.5% on helium absorption for both planets. We measure the host star’s X-ray spectrum and mid-ultraviolet flux with XMM-Newton, and model the outflow from both planets using a 3D hydrodynamic code. This model provides a reasonable match to the light curve in the blue wing of the Lyα line and the helium nondetection for planet c, although it does not explain the tentative red wing absorption or reproduce the excess absorption spectrum in detail. Its predictions of strong Lyα and helium absorption from b are ruled out by the observations. This model predicts a much shorter mass-loss timescale for planet b, suggesting that b and c are fundamentally different: while the latter still retains its hydrogen/helium envelope, the former has likely lost its primordial atmosphere.
Citation
Zhang , M , Knutson , H A , Wang , L , Dai , F , dos Santos , L A , Fossati , L , Henry , G W , Ehrenreich , D , Alibert , Y , Hoyer , S , Wilson , T G & Bonfanti , A 2022 , ' Detection of ongoing mass loss from HD 63433c, a young mini-Neptune ' , Astronomical Journal , vol. 163 , no. 2 , 68 . https://doi.org/10.3847/1538-3881/ac3f3b
Publication
Astronomical Journal
Status
Peer reviewed
DOI
https://doi.org/10.3847/1538-3881/ac3f3b
ISSN
0004-6256
Type
Journal article
Rights
Copyright © 2022. The American Astronomical Society. All rights reserved. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Description
L.D.S. and D.E. acknowledge that this project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (project Four Aces grant agreement No. 724427), and it has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). T.G.W. acknowledges support from STFC consolidated grant No. ST/R000824/1. S.H. acknowledges CNES funding through the grant 837319. S.H. acknowledges CNES funding through the grant 837319. G.W.H. acknowledges long-term support of the APT program from NASA, NSF, Tennessee State University, and the State of Tennessee through its Centers of Excellence Program.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/24700

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter