Files in this item
The Equalizer Conjecture for the free group of rank two
Item metadata
dc.contributor.author | Logan, Alan David | |
dc.date.accessioned | 2022-01-18T15:30:15Z | |
dc.date.available | 2022-01-18T15:30:15Z | |
dc.date.issued | 2021-12-30 | |
dc.identifier.citation | Logan , A D 2021 , ' The Equalizer Conjecture for the free group of rank two ' , Quarterly Journal of Mathematics , vol. Advance Article . https://doi.org/10.1093/qmath/haab059 | en |
dc.identifier.issn | 0033-5606 | |
dc.identifier.other | PURE: 277507693 | |
dc.identifier.other | PURE UUID: 1daeb009-da7b-470c-8919-d7e36e1c5e4b | |
dc.identifier.other | ORCID: /0000-0003-1767-6798/work/106838547 | |
dc.identifier.other | Scopus: 85133434282 | |
dc.identifier.uri | http://hdl.handle.net/10023/24696 | |
dc.description | Funding: This research was supported by Engineering and Physical Sciences Research Council (EPSRC) grant EP/R035814/1. | en |
dc.description.abstract | The equalizer of a set of homomorphisms S : F(a,b) → F(Δ) has rank at most two if S contains an injective map and is not finitely generated otherwise. This proves a strong form of Stallings’ Equalizer Conjecture for the free group of rank two. Results are also obtained for pairs of homomorphisms g,h : F(Σ) → F(Δ) when the images are inert in, or retracts of, F(Δ). | |
dc.format.extent | 17 | |
dc.language.iso | eng | |
dc.relation.ispartof | Quarterly Journal of Mathematics | en |
dc.rights | Copyright © The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject.lcc | QA | en |
dc.title | The Equalizer Conjecture for the free group of rank two | en |
dc.type | Journal article | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.identifier.doi | https://doi.org/10.1093/qmath/haab059 | |
dc.description.status | Peer reviewed | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.