Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLogan, Alan David
dc.date.accessioned2022-01-18T15:30:15Z
dc.date.available2022-01-18T15:30:15Z
dc.date.issued2021-12-30
dc.identifier.citationLogan , A D 2021 , ' The Equalizer Conjecture for the free group of rank two ' , Quarterly Journal of Mathematics , vol. Advance Article . https://doi.org/10.1093/qmath/haab059en
dc.identifier.issn0033-5606
dc.identifier.otherPURE: 277507693
dc.identifier.otherPURE UUID: 1daeb009-da7b-470c-8919-d7e36e1c5e4b
dc.identifier.otherORCID: /0000-0003-1767-6798/work/106838547
dc.identifier.otherScopus: 85133434282
dc.identifier.urihttp://hdl.handle.net/10023/24696
dc.descriptionFunding: This research was supported by Engineering and Physical Sciences Research Council (EPSRC) grant EP/R035814/1.en
dc.description.abstractThe equalizer of a set of homomorphisms S : F(a,b) → F(Δ) has rank at most two if S contains an injective map and is not finitely generated otherwise. This proves a strong form of Stallings’ Equalizer Conjecture for the free group of rank two. Results are also obtained for pairs of homomorphisms g,h : F(Σ) → F(Δ) when the images are inert in, or retracts of, F(Δ).
dc.format.extent17
dc.language.isoeng
dc.relation.ispartofQuarterly Journal of Mathematicsen
dc.rightsCopyright © The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccQAen
dc.titleThe Equalizer Conjecture for the free group of rank twoen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.identifier.doihttps://doi.org/10.1093/qmath/haab059
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record