Show simple item record

Files in this item


Item metadata

dc.contributor.authorLogan, Alan David
dc.identifier.citationLogan , A D 2021 , ' The Equalizer Conjecture for the free group of rank two ' , Quarterly Journal of Mathematics , vol. Advance Article .
dc.identifier.otherPURE: 277507693
dc.identifier.otherPURE UUID: 1daeb009-da7b-470c-8919-d7e36e1c5e4b
dc.identifier.otherORCID: /0000-0003-1767-6798/work/106838547
dc.identifier.otherScopus: 85133434282
dc.descriptionFunding: This research was supported by Engineering and Physical Sciences Research Council (EPSRC) grant EP/R035814/1.en
dc.description.abstractThe equalizer of a set of homomorphisms S : F(a,b) → F(Δ) has rank at most two if S contains an injective map and is not finitely generated otherwise. This proves a strong form of Stallings’ Equalizer Conjecture for the free group of rank two. Results are also obtained for pairs of homomorphisms g,h : F(Σ) → F(Δ) when the images are inert in, or retracts of, F(Δ).
dc.relation.ispartofQuarterly Journal of Mathematicsen
dc.rightsCopyright © The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectQA Mathematicsen
dc.titleThe Equalizer Conjecture for the free group of rank twoen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record