St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrarapid cerium(III)–NHC catalysts for high molar mass cyclic polylactide

Thumbnail
View/Open
Kerr_2021_ACSC_CeNHCultrafast_AAM.pdf (552.6Kb)
SupplInfo_ACSCatalysis.pdf (2.328Mb)
Date
15/01/2021
Author
Kerr, Ryan W. F.
Ewing, Paul
Raman, Sumesh K.
Smith, Andrew D.
Williams, Charlotte K.
Arnold, Polly L.
Keywords
Polymerization
Catalysis
Cerium
Polylactide
Cyclic
NHC
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Cyclic polyesters could improve the properties of degradable plastics, but routes to them that provide a product with faster rates, higher molar mass, and greater selectivity for cyclic vs linear polymer are needed. Here, homogeneous Ce(III)–N-heterocyclic carbene (NHC) catalysts show outstanding activities (turn-over-frequency (TOF) > 864 000 h–1), excellent control, and selectivity for cyclic polylactide (PLA) topology (>95%), yielding high molar mass PLA (60 < Mn < 250 kg mol–1). They efficiently produce cyclic PLA from rac-lactide or l-lactide and aliphatic cyclic polyesters from ε-caprolactone or β-butyrolactone. The enhanced performances are only achievable from combining cooperative Lewis acidic cerium(III) and hemilabile N-heterocyclic carbene functionalities.
Citation
Kerr , R W F , Ewing , P , Raman , S K , Smith , A D , Williams , C K & Arnold , P L 2021 , ' Ultrarapid cerium(III)–NHC catalysts for high molar mass cyclic polylactide ' , ACS Catalysis , vol. 11 , pp. 1563-1569 . https://doi.org/10.1021/acscatal.0c04858
Publication
ACS Catalysis
Status
Peer reviewed
DOI
https://doi.org/10.1021/acscatal.0c04858
ISSN
2155-5435
Type
Journal article
Rights
Copyright © 2021 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acscatal.0c04858
Description
The EPSRC are acknowledged for research funding through the Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT, EP/ L016419/1, R. W. F. K., P. M. D. A. E.), EP/J018139/1, the UK Catalysis Hub (EP/K014714/1, P. L. A., C. K. W., S. K. R.), EP/M010554/1 (P. L. A.) and EP/S018603/1 (C. K. W.). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740311, P.L.A.).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/24667

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter