Show simple item record

Files in this item


Item metadata

dc.contributor.authorBryer, Margaret A H
dc.contributor.authorKoopman, Sarah E
dc.contributor.authorCantlon, Jessica F
dc.contributor.authorPiantadosi, Steven T
dc.contributor.authorMacLean, Evan L
dc.contributor.authorBaker, Joseph M
dc.contributor.authorBeran, Michael J
dc.contributor.authorJones, Sarah M
dc.contributor.authorJordan, Kerry E
dc.contributor.authorMahamane, Salif
dc.contributor.authorNieder, Andreas
dc.contributor.authorPerdue, Bonnie M
dc.contributor.authorRange, Friederike
dc.contributor.authorStevens, Jeffrey R
dc.contributor.authorTomonaga, Masaki
dc.contributor.authorUjfalussy, Dorottya J
dc.contributor.authorVonk, Jennifer
dc.identifier.citationBryer , M A H , Koopman , S E , Cantlon , J F , Piantadosi , S T , MacLean , E L , Baker , J M , Beran , M J , Jones , S M , Jordan , K E , Mahamane , S , Nieder , A , Perdue , B M , Range , F , Stevens , J R , Tomonaga , M , Ujfalussy , D J & Vonk , J 2022 , ' The evolution of quantitative sensitivity ' , Philosophical Transactions of the Royal Society B: Biological Sciences , vol. 377 , no. 1844 , 20200529 .
dc.identifier.otherPURE: 277340135
dc.identifier.otherPURE UUID: 8e4a30e7-d8f0-4bc1-9082-815150d8656e
dc.identifier.otherPubMed: 34957840
dc.identifier.otherWOS: 000734386000001
dc.identifier.otherScopus: 85123036401
dc.identifier.otherORCID: /0000-0001-8116-9913/work/111210413
dc.descriptionThis work was supported by the National Science Foundation Graduate Research Fellowship Programme grant no. DGE-1419118 to S.E.K., and NSF 2000759 from the Division of Research on Learning in Formal and Informal Settings (DRL) to S.T.P., the Austrian Science Fund (FWF project no. P33928_B) to F.R., the Alfred P. Sloan Foundation Fellowship grant no. 220020300 to J.F.C., National Institutes of Health grant no. R01 HD085996 to J.F.C. and S.T.P. and the James S. McDonnell Foundation.en
dc.description.abstractThe ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
dc.relation.ispartofPhilosophical Transactions of the Royal Society B: Biological Sciencesen
dc.rightsCopyright © 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License, which permits unrestricted use, provided the original author and source are credited.en
dc.subjectWeber fractionen
dc.subjectBrain evolutionen
dc.subjectQuantity discriminationen
dc.subjectBF Psychologyen
dc.titleThe evolution of quantitative sensitivityen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Psychology and Neuroscienceen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record