St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting the mechanism of phospholipidosis

Thumbnail
View/Open
Loweetal2012Cheminformatics4_2Predicting.pdf (921.4Kb)
Date
26/01/2012
Author
Lowe, Robert
Mussa, Hamse Y.
Nigsch, Florian
Glen, Robert C.
Mitchell, John B. O.
Keywords
QD Chemistry
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The mechanism of phospholipidosis is still not well understood. Numerous different mechanisms have been proposed, varying from direct inhibition of the breakdown of phospholipids to the binding of a drug compound to the phospholipid, preventing breakdown. We have used a probabilistic method, the Parzen-Rosenblatt Window approach, to build a model from the ChEMBL dataset which can predict from a compound's structure both its primary pharmaceutical target and other targets with which it forms off-target, usually weaker, interactions. Using a small dataset of 182 phospholipidosis-inducing and non-inducing compounds, we predict their off-target activity against targets which could relate to phospholipidosis as a side-effect of a drug. We link these targets to specific mechanisms of inducing this lysosomal build-up of phospholipids in cells. Thus, we show that the induction of phospholipidosis is likely to occur by separate mechanisms when triggered by different cationic amphiphilic drugs. We find that both inhibition of phospholipase activity and enhanced cholesterol biosynthesis are likely to be important mechanisms. Furthermore, we provide evidence suggesting four specific protein targets. Sphingomyelin phosphodiesterase, phospholipase A2 and lysosomal phospholipase A1 are shown to be likely targets for the induction of phospholipidosis by inhibition of phospholipase activity, while lanosterol synthase is predicted to be associated with phospholipidosis being induced by enhanced cholesterol biosynthesis. This analysis provides the impetus for further experimental tests of these hypotheses.
Citation
Lowe , R , Mussa , H Y , Nigsch , F , Glen , R C & Mitchell , J B O 2012 , ' Predicting the mechanism of phospholipidosis ' , Journal of Cheminformatics , vol. 4 , 2 . https://doi.org/10.1186/1758-2946-4-2
Publication
Journal of Cheminformatics
Status
Peer reviewed
DOI
https://doi.org/10.1186/1758-2946-4-2
ISSN
1758-2946
Type
Journal article
Rights
© 2012 Lowe et al; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Collections
  • University of St Andrews Research
URL
http://www.jcheminf.com/content/4/1/2
URI
http://hdl.handle.net/10023/2463

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter