Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorIrvine, John T. S.
dc.contributor.authorGamble, Stephen R.
dc.coverage.spatial315en_US
dc.date.accessioned2012-03-20T16:18:53Z
dc.date.available2012-03-20T16:18:53Z
dc.date.issued2011-11-30
dc.identifieruk.bl.ethos.552647
dc.identifier.urihttps://hdl.handle.net/10023/2454
dc.description.abstractA reversible solid oxide fuel cell (RSOFC) system could buffer intermittent electrical generation, e.g. wind, wave power by storing electrical energy as hydrogen and heat. RSOFC were fabricated by thermoplastic extrusion of (La₀.₈Sr₀.₂)₀.₉₅MnO[subscript(3−δ)] (LSM) ceramic support tubes, which were microstructurally stable with 55% porosity at 1350°C. A composite oxygen electrode of LSM-YSZ was applied, providing a homogeneous substrate for a 20 μm - 30 μm thick YSZ electrolyte. A dip-coated 8YSZ slurry, and a painted commercial 3YSZ ink gave sintered densities of 90% and nearly 100% at 1350°C, respectively. A porous NiO/YSZ fuel electrode was also painted on. A Ag/Cu reactive air braze was unsuccessful at forming a void-free joint between the RSOFC and a 316 stainless steel gas delivery tube, as the braze did not penetrate the oxidation layer on the steel. Two alumina-based ceramic cements failed to fully seal the cell to an alumina gas delivery tube, due to thermal expansion coefficient mismatches and porosity after curing. Therefore, the maximum open circuit voltage (OCV) obtained during RSOFC testing was 0.8 V at 440°C. LSM-YSZ symmetrical cell performance measurements with oxygen pressure showed a diffusion polarisation, which was assigned to dissociative adsorption and surface diffusion of oxygen species. A collaborative RSOFC system software model showed ohmic and activation losses dominated the RSOFC, and diffusion losses were insignificant. Pressurisation from 1 to 70 bar increased the RSOFC Nernst voltage by 11% at 900°C, and reduced the entropy of the gases, reducing heat production and increasing electrical efficiency. A 500 kg Sn/Cu phase change heat store prevented the system overheating. Over a 16 h discharge-charge RSOFC cycle in the range 5 mol.% - 95 mol.% hydrogen in steam, at 20.4 A per cell or 3250 A m⁻², the electrical energy storage efficiency was 64.4%.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectChemistryen_US
dc.subjectSolid oxide fuel cellsen_US
dc.subjectEnergy storageen_US
dc.subjectExtrusionen_US
dc.subjectComputer modelen_US
dc.subjectEfficiencyen_US
dc.subjectRSOFCen_US
dc.subjectSOFCen_US
dc.subjectPressureen_US
dc.subject.lccTK2933.S65G2
dc.subject.lcshSolid oxide fuel cellsen_US
dc.subject.lcshEnergy conversionen_US
dc.subject.lcshEnergy storageen_US
dc.titleReversible solid oxide fuel cells as energy conversion and storage devicesen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.publisher.departmentChemistryen_US


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported