Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorKim, Eun Jeong
dc.contributor.authorMaughan, Philip
dc.contributor.authorBassey, Euan
dc.contributor.authorClément, Raphaële J.
dc.contributor.authorMa, Le Anh
dc.contributor.authorDuda, Laurent C.
dc.contributor.authorSehrawat, Divya
dc.contributor.authorYounesi, Reza
dc.contributor.authorSharma, Neeraj
dc.contributor.authorGrey, Clare
dc.contributor.authorArmstrong, A. Robert
dc.date.accessioned2021-12-14T10:30:02Z
dc.date.available2021-12-14T10:30:02Z
dc.date.issued2022-01-21
dc.identifier276818186
dc.identifierfe0e21d7-c688-457c-b84e-4e5f0314bf23
dc.identifier85120871989
dc.identifier000729072600001
dc.identifier.citationKim , E J , Maughan , P , Bassey , E , Clément , R J , Ma , L A , Duda , L C , Sehrawat , D , Younesi , R , Sharma , N , Grey , C & Armstrong , A R 2022 , ' Importance of superstructure in stabilizing oxygen redox in P3- Na 0.67 Li 0.2 Mn 0.8 O 2 ' , Advanced Energy Materials , vol. 12 , no. 3 , 2102325 . https://doi.org/10.1002/aenm.202102325en
dc.identifier.issn1614-6832
dc.identifier.otherORCID: /0000-0003-1937-0936/work/105006746
dc.identifier.urihttps://hdl.handle.net/10023/24507
dc.descriptionThis work was supported by the Faraday Institution (grant number FIRG018) and the Australian Research Council (discovery and future fellowship programs DP170100269/DP200100959 and FT200100707). E.B. acknowledges funding from the Engineering Physical Sciences Research Council (EPSRC) via the National Productivity Interest Fund (NPIF) 2018 and is also grateful for use of the ARCHER UK National Supercomputing Service via our membership in the UK's HEC Materials Chemistry Consortium, funded by the EPSRC (EP/L000202).en
dc.description.abstractActivation of oxygen redox represents a promising strategy to enhance the energy density of positive electrode materials in both lithium and sodium-ion batteries. However, the large voltage hysteresis associated with oxidation of oxygen anions during the first charge represents a significant challenge. Here, P3-type Na0.67Li0.2Mn0.8O2 is reinvestigated and a ribbon superlattice is identified for the first time in P3-type materials. The ribbon superstructure is maintained over cycling with very minor unit cell volume changes in the bulk while Li ions migrate reversibly between the transition metal and Na layers at the atomic scale. In addition, a range of spectroscopic techniques reveal that a strongly hybridized Mn 3d–O 2p favors ligand-to-metal charge transfer, also described as a reductive coupling mechanism, to stabilize reversible oxygen redox. By preparing materials under three different synthetic conditions, the degree of ordering between Li and Mn is varied. The sample with the maximum cation ordering delivers the largest capacity regardless of the voltage windows applied. These findings highlight the importance of cationic ordering in the transition metal layers, which can be tuned by synthetic control to enhance anionic redox and hence energy density in rechargeable batteries.
dc.format.extent12
dc.format.extent4793099
dc.language.isoeng
dc.relation.ispartofAdvanced Energy Materialsen
dc.subjectLayered structuresen
dc.subjectOxygen redoxen
dc.subjectP3 structureen
dc.subjectSodium-ion batteriesen
dc.subjectSuperstructuresen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subject.lccQDen
dc.titleImportance of superstructure in stabilizing oxygen redox in P3- Na0.67Li0.2Mn0.8O2en
dc.typeJournal articleen
dc.contributor.sponsorThe Faraday Institutionen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.identifier.doihttps://doi.org/10.1002/aenm.202102325
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/T005602/1en


This item appears in the following Collection(s)

Show simple item record