Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorChauvier, Adrien
dc.contributor.authorSt-Pierre, Patrick
dc.contributor.authorNadon, Jean-Francois
dc.contributor.authorHien, Elsa
dc.contributor.authorPerez Gonzalez, Daniel Cibran
dc.contributor.authorEschbach, Sebastien H.
dc.contributor.authorLamontagne, Anne-Marie
dc.contributor.authorPenedo , Carlos
dc.contributor.authorLafontaine, Daniel A.
dc.date.accessioned2021-11-09T11:30:09Z
dc.date.available2021-11-09T11:30:09Z
dc.date.issued2021-11-09
dc.identifier275982808
dc.identifier7eaff25f-9e0e-4136-b584-8681cf70ab11
dc.identifier85119264028
dc.identifier000720928400009
dc.identifier.citationChauvier , A , St-Pierre , P , Nadon , J-F , Hien , E , Perez Gonzalez , D C , Eschbach , S H , Lamontagne , A-M , Penedo , C & Lafontaine , D A 2021 , ' Monitoring RNA dynamics in native transcriptional complexes ' , Proceedings of the National Academy of Sciences of the United States of America , vol. 118 , no. 45 , e2116155118 . https://doi.org/10.1073/pnas.2106564118en
dc.identifier.issn0027-8424
dc.identifier.otherORCID: /0000-0002-5807-5385/work/103137322
dc.identifier.urihttps://hdl.handle.net/10023/24298
dc.descriptionThis work was supported by grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada. JCP wishes to thank the Scottish Universities Physics Alliance (SUPA) and the Engineering and Physical Sciences Research Council for support. C. P. G. thanks EPSRC and the University of St Andrews for a PhD scholarship.en
dc.description.abstractCotranscriptional RNA folding is crucial for the timely control of biological processes, but because of its transient nature, its study has remained challenging. While single-molecule Förster resonance energy transfer (smFRET) is unique to investigate transient RNA structures, its application to cotranscriptional studies has been limited to nonnative systems lacking RNA polymerase (RNAP)–dependent features, which are crucial for gene regulation. Here, we present an approach that enables site-specific labeling and smFRET studies of kilobase-length transcripts within native bacterial complexes. By monitoring Escherichia coli nascent riboswitches, we reveal an inverse relationship between elongation speed and metabolite-sensing efficiency and show that pause sites upstream of the translation start codon delimit a sequence hotspot for metabolite sensing during transcription. Furthermore, we demonstrate a crucial role of the bacterial RNAP actively delaying the formation, within the hotspot sequence, of competing structures precluding metabolite binding. Our approach allows the investigation of cotranscriptional regulatory mechanisms in bacterial and eukaryotic elongation complexes.
dc.format.extent11
dc.format.extent2860064
dc.language.isoeng
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of Americaen
dc.subjectSingle-molecule FRETen
dc.subjectTranscriptionen
dc.subjectRNAen
dc.subjectRiboswitchen
dc.subjectQH301 Biologyen
dc.subjectQH426 Geneticsen
dc.subjectNDASen
dc.subject.lccQH301en
dc.subject.lccQH426en
dc.titleMonitoring RNA dynamics in native transcriptional complexesen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1073/pnas.2106564118
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record