Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorChang, Mun See
dc.contributor.authorRoney-Dougal, Colva Mary
dc.date.accessioned2021-11-04T12:30:02Z
dc.date.available2021-11-04T12:30:02Z
dc.date.issued2021-10-26
dc.identifier275954601
dc.identifierae4dc6e4-2965-42d6-aed0-08d99a2741fe
dc.identifier85118115584
dc.identifier000711372500001
dc.identifier.citationChang , M S & Roney-Dougal , C M 2021 , ' Primitive normalisers in quasipolynomial time ' , Archiv der Mathematik , vol. First Online , ADMA-D-21-00337 . https://doi.org/10.1007/s00013-021-01670-5en
dc.identifier.issn0003-889X
dc.identifier.otherORCID: /0000-0002-0532-3349/work/102725171
dc.identifier.otherORCID: /0000-0003-2428-6130/work/102725804
dc.identifier.urihttps://hdl.handle.net/10023/24258
dc.descriptionFunding: The first author is supported by a Royal Society grant (RGF\EA\181005).en
dc.description.abstractThe normaliser problem has as input two subgroups H and K of the symmetric group Sn, and asks for a generating set for NK(H): it is not known to have a subexponential time solution. It is proved in [Roney-Dougal & Siccha, 2020] that if H is primitive then the normaliser problem can be solved in quasipolynomial time. We show that for all subgroups H and K of Sn, in quasipolynomial time we can decide whether NSn(H) is primitive, and if so compute NK(H). Hence we reduce the question of whether one can solve the normaliser problem in quasipolynomial time to the case where the normaliser in Sn is known not to be primitive.
dc.format.extent7
dc.format.extent295351
dc.language.isoeng
dc.relation.ispartofArchiv der Mathematiken
dc.subjectComputationen
dc.subjectPrimitive groupsen
dc.subjectPermutation groups,en
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccQAen
dc.titlePrimitive normalisers in quasipolynomial timeen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Interdisciplinary Research in Computational Algebraen
dc.contributor.institutionUniversity of St Andrews. St Andrews GAP Centreen
dc.contributor.institutionUniversity of St Andrews. School of Computer Scienceen
dc.identifier.doi10.1007/s00013-021-01670-5
dc.description.statusPeer revieweden
dc.identifier.grantnumberRGF\EA\181005en


This item appears in the following Collection(s)

Show simple item record