Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorXiao, Ganyuan
dc.contributor.authorAlphey, Magnus S.
dc.contributor.authorTran, Fanny
dc.contributor.authorPirrie, Lisa
dc.contributor.authorMilbeo, Pierre
dc.contributor.authorZhou, Yi
dc.contributor.authorBickel, Jasmine K.
dc.contributor.authorKempf, Oxana
dc.contributor.authorKempf, Karl
dc.contributor.authorNaismith, James H.
dc.contributor.authorWestwood, Nicholas J.
dc.date.accessioned2021-11-02T13:30:14Z
dc.date.available2021-11-02T13:30:14Z
dc.date.issued2021-11-15
dc.identifier276341100
dc.identifier03e290a3-dc87-4700-8d0f-c1a1dc5b33c1
dc.identifier85118334823
dc.identifier000719365900005
dc.identifier.citationXiao , G , Alphey , M S , Tran , F , Pirrie , L , Milbeo , P , Zhou , Y , Bickel , J K , Kempf , O , Kempf , K , Naismith , J H & Westwood , N J 2021 , ' Next generation glucose-1-phosphate thymidylyltransferase (RmlA) inhibitors : an extended SAR study to direct future design ' , Bioorganic & Medicinal Chemistry , vol. 50 , 116477 . https://doi.org/10.1016/j.bmc.2021.116477en
dc.identifier.issn0968-0896
dc.identifier.otherRIS: urn:0ECF94A60897114CED7371FCE73C41FA
dc.identifier.otherORCID: /0000-0003-0630-0138/work/101958309
dc.identifier.otherORCID: /0000-0002-9353-3716/work/101958359
dc.identifier.urihttps://hdl.handle.net/10023/24244
dc.descriptionFunding: This work was supported by grants from The Scottish Universities Life Science Alliance (L.P., Ph.D. studentship), a China Scholarship Council-University of St Andrews PhD Fellowship (GX). JHN is funded by the Wellcome Trust (100209/Z/12/Z).en
dc.description.abstractThe monosaccharide L-Rhamnose is an important component of bacterial cell walls. The first step in the L-rhamnose biosynthetic pathway is catalysed by glucose-1-phosphate thymidylyltransferase (RmlA), which condenses glucose-1-phosphate (Glu-1-P) with deoxythymidine triphosphate (dTTP) to yield dTDP-D-glucose. In addition to the active site where catalysis of this reaction occurs, RmlA has an allosteric site that is important for its function. Building on previous reports, SAR studies have explored further the allosteric site, leading to the identification of very potent P. aeruginosa RmlA inhibitors. Modification at the C6-NH2 of the inhibitor’s pyrimidinedione core structure was tolerated. X-ray crystallographic analysis of the complexes of P.aeruginosa RmlA with the novel analogues revealed that C6-aminoalkyl substituents can be used to position a modifiable amine just outside the allosteric pocket. This opens up the possibility of linking a siderophore to this class of inhibitor with the goal of enhancing bacterial cell wall permeability.
dc.format.extent5547747
dc.language.isoeng
dc.relation.ispartofBioorganic & Medicinal Chemistryen
dc.subjectAntibacterial drug discoveryen
dc.subjectBacterial cell wall synthesisen
dc.subjectRmlAen
dc.subjectStructure-based optimizationen
dc.subjectQR Microbiologyen
dc.subjectNDASen
dc.subject.lccQRen
dc.titleNext generation glucose-1-phosphate thymidylyltransferase (RmlA) inhibitors : an extended SAR study to direct future designen
dc.typeJournal articleen
dc.contributor.sponsorThe Wellcome Trusten
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1016/j.bmc.2021.116477
dc.description.statusPeer revieweden
dc.identifier.grantnumber100209/Z/12/Zen


This item appears in the following Collection(s)

Show simple item record