Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLai, Hung-En
dc.contributor.authorObled, Alan M. C.
dc.contributor.authorChee, Soo Mei
dc.contributor.authorMorgan, Rhodri M.
dc.contributor.authorLynch, Rosemary
dc.contributor.authorSharma, Sunil V.
dc.contributor.authorMoore, Simon J.
dc.contributor.authorPolizzi, Karen M.
dc.contributor.authorGoss, Rebecca J. M.
dc.contributor.authorFreemont, Paul S.
dc.date.accessioned2021-10-18T13:30:04Z
dc.date.available2021-10-18T13:30:04Z
dc.date.issued2021-10-14
dc.identifier276295670
dc.identifier64b2db9f-01c9-4315-a2e4-14196251c4ab
dc.identifier85118217163
dc.identifier000726641100008
dc.identifier.citationLai , H-E , Obled , A M C , Chee , S M , Morgan , R M , Lynch , R , Sharma , S V , Moore , S J , Polizzi , K M , Goss , R J M & Freemont , P S 2021 , ' GenoChemetic strategy for derivatization of the violacein natural product scaffold ' , ACS Chemical Biology , vol. Articles ASAP . https://doi.org/10.1021/acschembio.1c00483en
dc.identifier.issn1554-8929
dc.identifier.otherRIS: urn:9E9BEFBFB5BEAD9F2668E2B7C537239A
dc.identifier.otherORCID: /0000-0002-9726-0196/work/146014270
dc.identifier.urihttps://hdl.handle.net/10023/24154
dc.descriptionH.E.L. was supported by an Imperial College President’s Ph.D. Scholarship. We thank UKRI EPSRC (EP/K038648/1, EP/L011573/1 to P.S.F.) and the European Union’s Seventh Framework Programme (FP7/2007–2013/ERC grant agreement no. 614779 GenoChemetics to R.J.M.G.) for funding. A.M.C.O. receives funding from EPSRC CRITICAT, EP/L016419/1.en
dc.description.abstractNatural products and their analogues are often challenging to synthesize due to their complex scaffolds and embedded functional groups. Solely relying on engineering the biosynthesis of natural products may lead to limited compound diversity. Integrating synthetic biology with synthetic chemistry allows rapid access to much more diverse portfolios of xenobiotic compounds, which may accelerate the discovery of new therapeutics. As a proof-of-concept, by supplementing an Escherichia coli strain expressing the violacein biosynthesis pathway with 5-bromo-tryptophan in vitro or tryptophan 7-halogenase RebH in vivo, six halogenated analogues of violacein or deoxyviolacein were generated, demonstrating the promiscuity of the violacein biosynthesis pathway. Furthermore, 20 new derivatives were generated from 5-brominated violacein analogues via the Suzuki–Miyaura cross-coupling reaction directly using the crude extract without prior purification. Herein we demonstrate a flexible and rapid approach to access a diverse chemical space that can be applied to a wide range of natural product scaffolds.
dc.format.extent8
dc.format.extent1966611
dc.language.isoeng
dc.relation.ispartofACS Chemical Biologyen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subject.lccQDen
dc.titleGenoChemetic strategy for derivatization of the violacein natural product scaffolden
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1021/acschembio.1c00483
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/L016419/1en
dc.identifier.grantnumberGCGXCen


This item appears in the following Collection(s)

Show simple item record