Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0.67Mg0.2Mn0.8O2
Date
29/09/2020Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Lithium-rich layered oxides and sodium layered oxides represent attractive positive electrode materials exhibiting excess capacity delivered by additional oxygen redox activity. However, structural degradation in the bulk and detrimental reactions with the electrolyte on the surface often occur, leading to limited reversibility of oxygen redox processes. Here we present the properties of P3-type Na0.67Mg0.2Mn0.8O2 synthesized under both air and oxygen. Both materials exhibit stable cycling performance in the voltage range 1.8-3.8 V where the Mn3+/Mn4+ redox couple entirely dominates the electrochemical reaction. Oxygen redox activity is triggered for both compounds in the wider voltage window 1.8-4.3 V with typical large voltage hysteresis from non-bonding O 2p states generated by substituted Mg. Interestingly, for the compound prepared under oxygen, an additional reversible oxygen redox activity is shown with exceptionally small voltage hysteresis (20 mV). The presence of vacancies in the transition metal layers is shown to play a critical role not only in forming unpaired O 2p states independent of substituted elements but also in stabilising the P3 structure during charge with reduced structural transformation to the O’3 phase at the end of discharge. This study reveals the important role of vacancies in P3-type sodium layered oxides to increase energy density using both cationic and anionic redox processes.
Citation
Kim , E J , Ma , L A , Pickup , D M , Chadwick , A V , Younesi , R , Maughan , P A , Irvine , J T S & Armstrong , R 2020 , ' Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na 0.67 Mg 0.2 Mn 0.8 O 2 ' , ACS Applied Energy Materials , vol. In press . https://doi.org/10.1021/acsaem.0c01352
Publication
ACS Applied Energy Materials
Status
Peer reviewed
ISSN
2574-0962Type
Journal article
Rights
Copyright © 2020 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acsaem.0c01352
Description
EJK would like to thank the Alistore ERI for the award of a studentship. This work was supported by the Faraday Institution (grant number FIRG018).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.