St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydroxide salts in the clouds of Venus : their effect on the sulfur cycle and cloud droplet pH

Thumbnail
View/Open
Rimmer_TPSJ_Hydroxide_salts_CC.pdf (1.751Mb)
Date
08/2021
Author
Rimmer, Paul .B.
Jordan, Sean
Constantinou, Tereza
Woitke, Peter
Shorttle, Oliver
Hobbs, Richard
Paschodimas, Alessia
Keywords
Clouds
Planetary atmospheres
Venus
Water vapor
QB Astronomy
QC Physics
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The depletion of SO2 and H2O in and above the clouds of Venus (45-65 km) cannot be explained by known gasphase chemistry and the observed composition of the atmosphere. We apply a full-atmosphere model of Venus to investigate three potential explanations for the SO2 and H2O depletion: (1) varying the below-cloud water vapor (H2O), (2) varying the below-cloud sulfur dioxide (SO2), and (3) the incorporation of chemical reactions inside the sulfuric acid cloud droplets. We find that increasing the below-cloud H2O to explain the SO2 depletion results in a cloud top that is 20 km too high, above-cloud O2 three orders of magnitude greater than observational upper limits, and no SO above 80 km. The SO2 depletion can be explained by decreasing the below-cloud SO2 to 20 ppm. The depletion of SO2 in the clouds can also be explained by the SO2 dissolving into the clouds, if the droplets contain hydroxide salts. These salts buffer the cloud pH. The amount of salts sufficient to explain the SO2 depletion entails a droplet pH of ∼1 at 50 km. Because sulfuric acid is constantly condensing out into the cloud droplets, there must be a continuous and pervasive flux of salts of ≈10-13 mol cm-2 s-1 driving the cloud droplet chemistry. An atmospheric probe can test both of these explanations by measuring the pH of the cloud droplets and the concentrations of gas-phase SO2 below the clouds.
Citation
Rimmer , P B , Jordan , S , Constantinou , T , Woitke , P , Shorttle , O , Hobbs , R & Paschodimas , A 2021 , ' Hydroxide salts in the clouds of Venus : their effect on the sulfur cycle and cloud droplet pH ' , The Planetary Science Journal , vol. 2 , no. 4 , 133 . https://doi.org/10.3847/PSJ/ac0156
Publication
The Planetary Science Journal
Status
Peer reviewed
DOI
https://doi.org/10.3847/PSJ/ac0156
ISSN
2632-3338
Type
Journal article
Rights
Copyright © 2021. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Description
P.B.R. thanks the Simons Foundation for funding (SCOL awards 599634). P.W. acknowledges funding from the European Union H2020-MSCA-ITN-2019 under Grant Agreement no. 860470 (CHAMELEON).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/24002

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter