St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

New test on the Einstein equivalence principle through the photon ring of black holes

Thumbnail
View/Open
Li_2021_New_test_on_the_Einstein_PhysRevD_104_064027.pdf (742.5Kb)
Date
15/09/2021
Author
Li, Chunlong
Zhao, Hongsheng
Cai, Yi Fu
Keywords
Quantum-electrodynamic corrections
Constant
Gravity
QB Astronomy
QC Physics
Physics and Astronomy (miscellaneous)
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Einstein equivalence principle (EEP), as one of the foundations of general relativity, is a fundamental test of gravity theories. In this paper, we propose a new method to test the EEP of electromagnetic interactions through observations of black hole photon rings, which naturally extends the scale of Newtonian and post-Newtonian gravity where the EEP violation through a variable fine structure constant has been well constrained to that of stronger gravity. We start from a general form of Lagrangian that violates EEP, where a specific EEP violation model could be regarded as one of the cases of this Lagrangian. Within the geometrical optical approximation, we find that the dispersion relation of photons is modified: for photons moving in circular orbit, the dispersion relation simplifies, and behaves such that photons with different linear polarizations perceive different gravitational potentials. This makes the size of black hole photon ring depend on polarization. Further assuming that the EEP violation is small, we derive an approximate analytic expression for spherical black holes showing that the change in size of the photon ring is proportional to the violation parameters. We also discuss several cases of this analytic expression for specific models. Finally, we explore the effects of black hole rotation and derive a modified proportionality relation between the change in size of photon ring and the violation parameters. The numerical and analytic results show that the influence of black hole rotation on the constraints of EEP violation is relatively weak for small magnitude of EEP violation and small rotation speed of black holes.
Citation
Li , C , Zhao , H & Cai , Y F 2021 , ' New test on the Einstein equivalence principle through the photon ring of black holes ' , Physical Review D - Particles, Fields, Gravitation and Cosmology , vol. 104 , no. 6 , 064027 . https://doi.org/10.1103/PhysRevD.104.064027
Publication
Physical Review D - Particles, Fields, Gravitation and Cosmology
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevD.104.064027
ISSN
1550-7998
Type
Journal article
Rights
Copyright © 2021 American Physical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1103/PhysRevD.104.064027.
Description
Funding: This work is supported in part by the NSFC (Nos. 11653002, 11961131007, 11722327,1201101448, 11421303), by the CAST (2016QNRC001), by the National Thousand Talents Program of China, by the Fundamental Research Funds for Central Universities, and by the USTC Fellowship for international cooperation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23996

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter