St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The planar triangular S = 3/2 magnet AgCrSe2 : magnetic frustration, short range correlations, and field tuned anisotropic cycloidal magnetic order

Thumbnail
View/Open
Baenitz_2021_Planar_triangular_S_PhysRevD_AAM.pdf (2.872Mb)
Date
01/10/2021
Author
Baenitz, M.
Piva, M. M.
Luther, S.
Sichelschmidt, J.
Ranjith, K. M.
Dawczak-Dȩbicki, H.
Ajeesh, M. O.
Kim, S. -J.
Siemann, G.
Bigi, C.
Manuel, P.
Khalyavin, D.
Sokolov, D. A.
Mokhtari, P.
Zhang, H.
Yasuoka, H.
King, P. D. C.
Vinai, G.
Polewczyk, V.
Torelli, P.
Wosnitza, J.
Burkhardt, U.
Schmidt, B.
Rosner, H.
Wirth, S.
Kühne, H.
Nicklas, M.
Schmidt, M.
Keywords
QB Astronomy
QC Physics
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Our studies evidence an anisotropic magnetic order below TN = 32~K. Susceptibility data in small fields of about 1~T reveal an antiferromagnetic (AFM) order for H ⊥ c, whereas for H || c the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for H ⊥ c, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at H+ = 5~T, which is absent for H || c. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fan-like arrangement above H+. A fully FM polarized state is obtained above the saturation field of H⊥S = 23.7~T at 2~K with a magnetization of Ms = 2.8~μB/Cr. For H || c, M(H) monotonously increases and saturates at the same Ms value at HIIS = 25.1~T at 4.2~K. Above TN, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about T* = 45~K, which is a clear fingerprint of short-range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possible related to the non-centrosymmetric polar space group R3m. Due to these competing interactions, the magnetism in AgCrSe2, in contrast to the oxygen based delafossites, can be tuned by relatively small, experimentally accessible, magnetic fields, allowing us to establish the complete anisotropic magnetic H-T phase diagram in detail.
Citation
Baenitz , M , Piva , M M , Luther , S , Sichelschmidt , J , Ranjith , K M , Dawczak-Dȩbicki , H , Ajeesh , M O , Kim , S -J , Siemann , G , Bigi , C , Manuel , P , Khalyavin , D , Sokolov , D A , Mokhtari , P , Zhang , H , Yasuoka , H , King , P D C , Vinai , G , Polewczyk , V , Torelli , P , Wosnitza , J , Burkhardt , U , Schmidt , B , Rosner , H , Wirth , S , Kühne , H , Nicklas , M & Schmidt , M 2021 , ' The planar triangular S = 3/2 magnet AgCrSe 2 : magnetic frustration, short range correlations, and field tuned anisotropic cycloidal magnetic order ' , Physical Review. B, Condensed matter and materials physics , vol. 104 , no. 13 . https://doi.org/10.1103/PhysRevB.104.134410
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevB.104.134410
ISSN
1098-0121
Type
Journal article
Rights
Copyright © 2021 American Physical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://journals.aps.org/prb/
Description
Funding: Deutsche Forschungsgemeinschaft (DFG) through the SFB 1143 and the Wurzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter–ct.qmat (EXC 2147, Project No. 390858490), as well as the support of the HLD at HZDR, a member of the European Magnetic Field Laboratory (EMFL). We gratefully acknowledge support from the European Research Council (through the QUESTDO project, 714193), the Leverhulme Trust, and the Royal Society. We thank the Elettra synchrotron for access to the APE-HE beamline under proposal number 20195300. The research leading to this result has been supported by the project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Part of this work has been performed in the framework of the Nanoscience Foundry and Fine Analysis (NFFA-MUR Italy Progetti Internazionali) project (www.trieste.NFFA.eu).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23994

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter