Show simple item record

Files in this item


Item metadata

dc.contributor.authorMorris, Ian D.
dc.contributor.authorJurga, Natalia
dc.identifier.citationMorris , I D & Jurga , N 2021 , ' How long is the chaos game? ' , Bulletin of the London Mathematical Society , vol. Early View .
dc.identifier.otherPURE: 275900087
dc.identifier.otherPURE UUID: 95307384-85a2-4a55-af06-b03a47a6b167
dc.descriptionFunding: Leverhulme Trust (Grant Number(s): RPG-2016-194), Engineering and Physical Sciences Research Council (Grant Number(s): EP/R015104/1).en
dc.description.abstractIn the 1988 textbook Fractals Everywhere, Barnsley introduced an algorithm for generating fractals through a random procedure which he called the chaos game. Using ideas from the classical theory of covering times of Markov chains, we prove an asymptotic formula for the expected time taken by this procedure to generate a -dense subset of a given self-similar fractal satisfying the open set condition.
dc.relation.ispartofBulletin of the London Mathematical Societyen
dc.rightsCopyright © 2021 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.subjectQA Mathematicsen
dc.titleHow long is the chaos game?en
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.Pure Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record