Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites : electrical and electrochemical performance
Date
15/01/2021Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
La0.7-xPrxCa0.3MnO3 (LPCM) perovskites previously synthesized by the microwave-assisted method at 4 min and with different stoichiometry (x = 0.35, 0.52 and 0.63) were evaluated through thermogravimetric analysis (TGA), electrical conductivity, thermal expansion coefficient (TEC), scanning electron microscopy (SEM), Brunauer- Emmet- Teller (BET) analysis and electrochemical impedance spectroscopy (EIS) using yttria stabilized zirconia (YSZ) as an electrolyte. The results are discussed in terms of the potential as cathode material to be applied in solid oxide fuel cells (SOFCs) applications at temperatures from 600 to 800 °C. Results derived from TGA showed that Pr promotes the uncoupling oxygen and oxygen vacancies favoring the fuel combusting. Also, TEC analysis revealed adequate stability between the YSZ electrolyte and the La0.7-xPrxCa0.3MnO3 to avoid cracking or failing, especially with high amount of Pr. The transition in morphology from irregular to regular shapes improves the BET and Barret- Joyner- Halenda (BJH) surfaces and promotes the triple phase boundary (TPB) connectivity. The electrical conductivity correlated to the availability in oxygen vacancies showed maximum conductivities in the order of 10−2 S cm−1. Activation energy (Ea) was found to be reduced with a minimum quantity of Pr (0.071 eV). EIS results indicate that the oxygen vacancies in the LPCM/YSZ system were better promoted with the highest amount of Pr = 0.63 (η = 0.9 V, 800 °C and 0.06 V of amplitude) in comparison with the minimum, Pr = 0.35 (η = 1.2 V, 800 °C and 0.06 V of amplitude).
Citation
Ferrel-Alvarez , A C , Domínguez-Crespo , M A , Cong , H , Torres-Huerta , A M , Palma-Ramírez , D & Irvine , J T S 2021 , ' Microwave irradiation synthesis to obtain La 0.7-x PrxCa 0.3 MnO 3 perovskites : electrical and electrochemical performance ' , Journal of Alloys and Compounds , vol. 851 , 156882 . https://doi.org/10.1016/j.jallcom.2020.156882
Publication
Journal of Alloys and Compounds
Status
Peer reviewed
ISSN
0925-8388Type
Journal article
Rights
Copyright © 2020 Elsevier B.V. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.jallcom.2020.156882
Description
Atzin Ferrel is grateful for her grants from CONACYT and SIP- IPN. The authors also appreciate the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT), México, Comisión de Operación y Fomento de Actividades Académicas del IPN (COFAA), México and Secretaría de Investigación y Posgrado (SIP) of the Instituto Politécnico Nacional (IPN) México through the CB2015–252181, 20201278, 20201279, 20201280, 20202443 and 20200909 projects as well as the SNI-CONACyT.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.