St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Re-identification of individuals from images using spot constellations : a case study in Arctic charr (Salvelinus alpinus)

Thumbnail
View/Open
Debicki_2021_RSOS_Re_identification_individual_CC.pdf (2.225Mb)
Date
07/2021
Author
Debicki, Ignacy T.
Mittell, Elizabeth A.
Kristjánsson, Bjarni K.
Leblanc, Camille A.
Morrissey, Michael B.
Terzić, Kasim
Keywords
Capture-mark-recapture
Spot matching
Spot extraction
Deep-learning
Individual re-identification
Photo identification
QA76 Computer software
QH301 Biology
QL Zoology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The ability to re-identify individuals is fundamental to the individual-based studies that are required to estimate many important ecological and evolutionary parameters in wild populations. Traditional methods of marking individuals and tracking them through time can be invasive and imperfect, which can affect these estimates and create uncertainties for population management. Here we present a photographic re-identification method that uses spot constellations in images to match specimens through time. Photographs of Arctic charr (Salvelinus alpinus) were used as a case study. Classical computer vision techniques were compared with new deep-learning techniques for masks and spot extraction. We found that a U-Net approach trained on a small set of human-annotated photographs performed substantially better than a baseline feature engineering approach. For matching the spot constellations, two algorithms were adapted, and, depending on whether a fully or semi-automated set-up is preferred, we show how either one or a combination of these algorithms can be implemented. Within our case study, our pipeline both successfully identified unmarked individuals from photographs alone and re-identified individuals that had lost tags, resulting in an approximately 4 our multi-step pipeline involves little human supervision and could be applied to many organisms.
Citation
Debicki , I T , Mittell , E A , Kristjánsson , B K , Leblanc , C A , Morrissey , M B & Terzić , K 2021 , ' Re-identification of individuals from images using spot constellations : a case study in Arctic charr ( Salvelinus alpinus ) ' , Royal Society Open Science , vol. 8 , no. 7 , 201768 . https://doi.org/10.1098/rsos.201768
Publication
Royal Society Open Science
Status
Peer reviewed
DOI
https://doi.org/10.1098/rsos.201768
ISSN
2054-5703
Type
Journal article
Rights
Copyright © 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Description
The long-term monitoring of Arctic charr in lava caves is funded by the Icelandic Research Fund, RANNÍS (research grant nos. 120227 and 162893). E.A.M. was supported by the Icelandic Research Fund, RANNÍS (grant no. 162893) and NERC research grant awarded to M.B.M. (grant no. NE/R011109/1). M.B.M. was supported by a University Research Fellowship from the Royal Society (London). C.A.L. and B.K.K. were supported by Hólar University, Iceland. The Titan Xp GPU used for this research was donated to K.T. by the NVIDIA Corporation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23658

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter