A new high-performance proton-conducting electrolyte for next-generation solid oxide fuel cells
View/ Open
Date
24/07/2020Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Conventional solid oxide fuel cells (SOFCs) are operable at high temperatures (700 – 1,000 °C) with the most commonly used electrolyte, yttria‐stabilized zirconia (YSZ). SOFC R&D activities have thus been carried out to reduce the SOFC operating temperature. At intermediate temperatures (400 – 700 °C), barium cerate (BaCeO3) and barium zirconate (BaZrO3) are good candidates for use as proton‐conducting electrolytes due to their promising electrochemical characteristics. Here, we combined two widely studied proton‐conducting materials with two dopants and discovered an attractive composition for the investigation of electrochemical behaviors. Ba0.9Sr0.1Ce0.5Zr0.35Y0.1Sm0.05O3‐δδ(BSCZYSm), a perovskite‐type polycrystalline material, has shown very promising properties to be used as proton‐conducting electrolytes at intermediate temperature range. BSCZYSm shows a high proton conductivity of 4.167×10−3 S cm−1 in a wet argon atmosphere and peak power density of 581.7 mW cm−2 in Ni‐BSCZYSm | BSCZYSm | BSCF cell arrangement at 700 °C, which is one of the highest in comparison to proton‐conducting electrolyte‐based fuel cells reported till now.
Citation
Radenahmad , N , Afif , A , Abdalla , A M , Saqib , M , Park , J-Y , Zaini , J , Irvine , J , Hyun Kim , J & Azad , A K 2020 , ' A new high-performance proton-conducting electrolyte for next-generation solid oxide fuel cells ' , Energy Technology , vol. Early View , 2000486 . https://doi.org/10.1002/ente.202000486
Publication
Energy Technology
Status
Peer reviewed
ISSN
2194-4288Type
Journal article
Rights
Copyright © 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/ente.202000486
Description
N. Radenahmad and A. Afif are thankful to Universiti Brunei Darussalam for sponsoring the UBD graduate scholarship to perform Ph.D. work at Brunei Darussalam. The authors are also grateful to the late Professor Sten Eriksson for supporting a summer scholarship for NR to accomplish a part of this work at Chalmers University of Technology, Sweden. This work was also partially funded by research grant UBD/OVAORI/CRGWG(006)/161201.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.