Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorPalacino, Roberta
dc.contributor.authorKeeling, Jonathan
dc.date.accessioned2021-07-22T20:30:17Z
dc.date.available2021-07-22T20:30:17Z
dc.date.issued2021-07-19
dc.identifier274866791
dc.identifier08494915-2085-4380-8ca9-d5b634d73ed9
dc.identifier000674634400007
dc.identifier85113832244
dc.identifier.citationPalacino , R & Keeling , J 2021 , ' Atom-only theories for U(1) symmetric cavity-QED models ' , Physical Review Research , vol. 3 , no. 3 , L032016 . https://doi.org/10.1103/PhysRevResearch.3.L032016en
dc.identifier.issn2643-1564
dc.identifier.otherArXiv: http://arxiv.org/abs/2011.12120v1
dc.identifier.otherORCID: /0000-0002-4283-552X/work/97473518
dc.identifier.urihttps://hdl.handle.net/10023/23617
dc.descriptionFunding: R.P. was supported by the EPSRC Scottish Doctoral Training Centre in Condensed Matter Physics (CM-CDT), Grant No. EP/L015110/1.en
dc.description.abstractWe consider a generalized Dicke model with U(1) symmetry, which can undergo a transition to a superradiant state that spontaneously breaks this symmetry. By exploiting the difference in timescale between atomic and cavity dynamics, one may eliminate the cavity dynamics, providing an atom-only theory. We show that the standard Redfield theory cannot describe the transition to the superradiant state, but including higher-order corrections does recover the transition. Our work reveals how the forms of effective theories must vary for models with continuous symmetry, and provides a template to develop effective theories of more complex models.
dc.format.extent6
dc.format.extent439289
dc.language.isoeng
dc.relation.ispartofPhysical Review Researchen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subjectMCCen
dc.subjectNCADen
dc.subject.lccQCen
dc.titleAtom-only theories for U(1) symmetric cavity-QED modelsen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1103/PhysRevResearch.3.L032016
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/L015110/1en
dc.identifier.grantnumberEP/L015110/1en


This item appears in the following Collection(s)

Show simple item record