St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

Thumbnail
View/Open
Pestana_2020_STE_Photocatalytic_AAM.pdf (1.003Mb)
Date
25/11/2020
Author
Pestana, Carlos J.
Portela Noronha, Jolita
Hui, Jianing
Edwards, Christine
Gunaratne, H. Q.Nimal
Irvine, John T.S.
Robertson, Peter K.J.
Capelo-Neto, José
Lawton, Linda A.
Funder
EPSRC
Grant ID
EP/P029280/1
Keywords
Cyanobacteria
Cyanotoxins
Photocatalysis
Titanium dioxide
UV-LED
Water treatment
QD Chemistry
Environmental Engineering
Environmental Chemistry
Waste Management and Disposal
Pollution
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Cyanobacteria and their toxic secondary metabolites are a challenge in water treatment due to increased biomass and dissolved metabolites in the raw water. Retrofitting existing water treatment infrastructure is prohibitively expensive or unfeasible, hence ‘in-reservoir’ treatment options are being explored. In the current study, a treatment system was able to photocatalytically inhibit the growth of Microcystis aeruginosa and remove released microcystins by photocatalysis using titanium dioxide coated, porous foamed glass beads and UV-LEDs (365 nm). A 35% reduction of M. aeruginosa PCC7813 cell density compared to control samples was achieved in seven days. As a function of cell removal, intracellular microcystins (microcystin-LR, -LY, -LW, and -LF) were removed by 49% from 0.69 to 0.35 μg mL−1 in seven days. Microcystins that leaked into the surrounding water from compromised cells were completely removed by photocatalysis. The findings of the current study demonstrate the feasibility of an in-reservoir treatment unit applying low cost UV-LEDs and porous foamed beads made from recycled glass coated with titanium dioxide as a means to control cyanobacteria and their toxins before they can reach the water treatment plant.
Citation
Pestana , C J , Portela Noronha , J , Hui , J , Edwards , C , Gunaratne , H Q N , Irvine , J T S , Robertson , P K J , Capelo-Neto , J & Lawton , L A 2020 , ' Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO 2 coated porous glass beads with UV-LED irradiation ' , Science of the Total Environment , vol. 745 , 141154 . https://doi.org/10.1016/j.scitotenv.2020.141154
Publication
Science of the Total Environment
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.scitotenv.2020.141154
ISSN
0048-9697
Type
Journal article
Rights
Copyright © 2020 Elsevier B.V. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.scitotenv.2020.141154
Description
The authors acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding this research [EP/P029280/1].
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23614

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter