Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorYao, Yulian
dc.contributor.authorNaden, Aaron B.
dc.contributor.authorZhang, Fengyuan
dc.contributor.authorEdwards, David
dc.contributor.authorJoshi, Pooran
dc.contributor.authorRodriguez, Brian J.
dc.contributor.authorKumar, Amit
dc.contributor.authorBassiri-Gharb, Nazanin
dc.date.accessioned2021-07-20T23:35:42Z
dc.date.available2021-07-20T23:35:42Z
dc.date.issued2020-12
dc.identifier.citationYao , Y , Naden , A B , Zhang , F , Edwards , D , Joshi , P , Rodriguez , B J , Kumar , A & Bassiri-Gharb , N 2020 , ' Direct processing of PbZr 0.53 Ti 0.47 O 3 films on glass and polymeric substrates ' , Journal of the European Ceramic Society , vol. 40 , no. 15 , pp. 5369-5375 . https://doi.org/10.1016/j.jeurceramsoc.2020.07.052en
dc.identifier.issn0955-2219
dc.identifier.otherPURE: 269528901
dc.identifier.otherPURE UUID: 98afef31-a0cc-4af1-ae10-fbf337a81696
dc.identifier.otherRIS: urn:162936B769CD48D5A7574911A9A329AF
dc.identifier.otherScopus: 85088930257
dc.identifier.otherWOS: 000564727300008
dc.identifier.otherORCID: /0000-0003-2876-6991/work/110912174
dc.identifier.urihttps://hdl.handle.net/10023/23611
dc.descriptionThis work was supported by the U.S. National Science Foundation under grant No. CMMI-1537262, Science Foundation Ireland (SFI) under the US-Ireland R&D Partnership Programme Grant Number SFI/14/US/I3113, the China Scholarship Council, and the Department of Education and Learning NI through grant USI-082.en
dc.description.abstractThis work reports on direct crystallization of PbZr0.53Ti0.47O3 (PZT) thin films on glass and polymeric substrates, using pulsed thermal processing (PTP). Specifically, xenon flash lamps deliver pulses of high intensity, short duration, broadband light to the surface of a chemical solution deposited thin film, resulting in the crystallization of the film. Structural analysis by X-ray diffraction (XRD) and transmission electron microscopy show the existence of perovskite structure in nano-sized grains (≤5 nm). Local functional analysis by band excitation piezoelectric spectroscopy and electrostatic force microscopy confirm the presence of a ferroelectric phase and retention of voltage-written polarization for multiple days. Based on structural and functional analyses, strategies are discussed for optimization of pulse voltage and duration for the realization of crystalline ferroelectric thin films. For ∼200 nm-thick PZT films on glass substrates, 500 μs-long pulses were required for crystallization, starting with 100 pulses at 350 V, 10 or 25 pulses at 400 V and in general lower number of pulses at higher voltages (resulting in higher radiant energy). Overall power densities of >6.4 kW/cm2 were needed for appearance of peaks corresponding to the perovskite phase in the XRD. Films on glass processed at 350–400 V had a higher degree of 111-oriented perovskite grains. Higher applied radiant energy (through increased pulse voltage or count) resulted in more random and/or partially 001-oriented films. For ∼1 μm-thick PZT films on polymeric substrates, 10 to 25 250 μs-long pulses at voltages ranging between 200 to 250 V, corresponding to power densities of ∼2.8 kW/cm2, were optimal for maximized perovskite phase crystallization, while avoiding substrate damage.
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofJournal of the European Ceramic Societyen
dc.rightsCopyright © 2020 Elsevier Ltd. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.jeurceramsoc.2020.07.052en
dc.subjectDirect low-temperature processingen
dc.subjectPZT Thin filmsen
dc.subjectPerovskiteen
dc.subjectGlass substratesen
dc.subjectPolymeric substratesen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subject.lccQDen
dc.titleDirect processing of PbZr0.53Ti0.47O3 films on glass and polymeric substratesen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.identifier.doihttps://doi.org/10.1016/j.jeurceramsoc.2020.07.052
dc.description.statusPeer revieweden
dc.date.embargoedUntil2021-07-21


This item appears in the following Collection(s)

Show simple item record