Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorConteduca, Donato
dc.contributor.authorBrunetti, Giuseppe
dc.contributor.authorPitruzzello, Giampaolo
dc.contributor.authorTragni, Francesco
dc.contributor.authorDholakia, Kishan
dc.contributor.authorKrauss, Thomas F.
dc.contributor.authorCiminelli, Caterina
dc.date.accessioned2021-07-14T14:30:27Z
dc.date.available2021-07-14T14:30:27Z
dc.date.issued2021-07-06
dc.identifier274960713
dc.identifierd79a7d9f-8397-4bd4-aac6-79e81fb62ab6
dc.identifier85111028288
dc.identifier000677543700025
dc.identifier.citationConteduca , D , Brunetti , G , Pitruzzello , G , Tragni , F , Dholakia , K , Krauss , T F & Ciminelli , C 2021 , ' Exploring the limit of multiplexed near-field optical trapping ' , ACS Photonics , vol. 8 , no. 7 . https://doi.org/10.1021/acsphotonics.1c00354en
dc.identifier.issn2330-4022
dc.identifier.otherRIS: urn:5D9B03AC1C83131360F8075B2A1BB810
dc.identifier.urihttps://hdl.handle.net/10023/23564
dc.descriptionThe authors G.B., F.T., and C.C acknowledge financial support by the POR of Apulia region, IT (FESR FSR 2014−2020, Action 10.4, “Research for Innovation” (REFIN) Initiative). The authors D.C., G.P., K.D., and T.F.K. acknowledge financial support by the EPSRC of the UK (Grant EP/P030017/1).en
dc.description.abstractOptical trapping has revolutionized our understanding of biology by manipulating cells and single molecules using optical forces. Moving to the near-field creates intense field gradients to trap very smaller particles, such as DNA fragments, viruses, and vesicles. The next frontier for such optical nanotweezers in biomedical applications is to trap multiple particles and to study their heterogeneity. To this end, we have studied dielectric metasurfaces that allow the parallel trapping of multiple particles. We have explored the requirements for such metasurfaces and introduce a structure that allows the trapping of a large number of nanoscale particles (>1000) with a very low total power P < 26 mW. We experimentally demonstrate the near-field enhancement provided by the metasurface and simulate its trapping performance. We have optimized the metasurface for the trapping of 100 nm diameter particles, which will open up opportunities for new biological studies on viruses and extracellular vesicles, such as studying heterogeneity, or to massively parallelize analyses for drug discovery.
dc.format.extent7
dc.format.extent4546441
dc.language.isoeng
dc.relation.ispartofACS Photonicsen
dc.subjectOptical nanotweezersen
dc.subjectMultiple trappingen
dc.subjectDielectric metasurfaceen
dc.subjectNear-field trappingen
dc.subjectNanophotonicsen
dc.subjectAnapole modesen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subject.lccQDen
dc.titleExploring the limit of multiplexed near-field optical trappingen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doi10.1021/acsphotonics.1c00354
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/P030017/1en


This item appears in the following Collection(s)

Show simple item record