Enumerating 0-simple semigroups
Abstract
Computational semigroup theory involves the study and implementation of algorithms to compute with semigroups. Efficiency is of central concern and often follows from the insight of semigroup theoretic results. In turn, computational methods allow for analysis of semigroups which can provide intuition leading to theoretical breakthroughs. More efficient algorithms allow for more cases to be computed and increases the potential for insight. In this way, research into computational semigroup theory and abstract semigroup theory forms a feedback loop with each benefiting the other.
In this thesis the primary focus will be on counting isomorphism classes of finite 0-simple semigroups. These semigroups are in some sense the building blocks of finite semigroups due to their correspondence with the Greens 𝒟-classes of a semigroup. The theory of Rees 0-matrix semigroups links these semigroups to matrices with entries from 0-groups. Special consideration will be given to the enumeration of certain sub-cases, most prominently the case of congruence free semigroups. The author has implemented these enumeration techniques and applied them to count isomorphism classes of 0-simple semigroups and congruence free semigroups by order. Included in this thesis are tables of the number of 0-simple semigroups of orders less than or equal to 130, up to isomorphism. Also included are tables of the numbers of congruence free semigroups, up to isomorphism, with m Green’s ℒ-classes and n Green’s ℛ-classes for all mn less than or equal to 100, as well as for various other values of m,n. Furthermore a database of finite 0-simple semigroups has been created and we detail how this was done. The implementation of these enumeration methods and the database are publicly available as GAP code. In order to achieve these results pertaining to finite 0-simple semigroups we invoke the theory of group actions and prove novel combinatorial results. Most notably, we have deduced formulae for enumerating the number of binary matrices with distinct rows and columns up to row and column permutations.
There are also two sections dedicated to covers of E-unitary inverse semigroups, and presentations of factorisable orthodox monoids, respectively. In the first, we explore the concept of a minimal E-unitary inverse cover, up to isomorphism, by defining various sensible orderings. We provide examples of Clifford semigroups showing that, in general, these orderings do not have a unique minimal element. Finally, we pose conjectures about the existence of unique minimal E-unitary inverse covers of Clifford semigroups, when considered up to an equivalence weaker than isomorphism. In the latter section, we generalise the theory of presentations of factorisable inverse monoids to the more general setting of factorisable orthodox monoids. These topics were explored early in the authors doctoral studies but ultimately in less depth than the research on 0-simple semigroups.
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Related items
Showing items related by title, author, creator and subject.
-
Generation and presentations of semigroup constructions : Bruck-Reilly extensions and P-semigroups
Carvalho, Catarina A. S. (University of St Andrews, 2006) - ThesisIn this thesis we study problems regarding finite presentability of Bruck-Reilly extensions, finite generation of the underlying monoids, and finite generation of P-unitary inverse semigroups. The first main question we ... -
Minimum degrees of finite rectangular bands, null semigroups, and variants of full transformation semigroups
Cameron, Peter J.; East, James; FtzGerald, Des; Mitchell, James David; Pebody, Luke; Quinn-Gregson, Thomas (2023-12-22) - Journal articleFor a positive integer n, the full transformation semigroup Tn consists of all self maps of the set {1,…,n} under composition. Any finite semigroup S embeds in some Tn, and the least such n is called the (minimum transformation) ... -
On generators, relations and D-simplicity of direct products, Byleen extensions, and other semigroup constructions
Baynes, Samuel (University of St Andrews, 2015-11-30) - ThesisIn this thesis we study two different topics, both in the context of semigroup constructions. The first is the investigation of an embedding problem, specifically the problem of whether it is possible to embed any given ...