St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biological cohesion as the architect of bed movement under wave action

Thumbnail
View/Open
Chen_2021_Biological_cohesion_as_the_GRL_e2020GL092137.pdf (1.476Mb)
Date
16/03/2021
Author
Chen, Xindi
Zhang, Changkuan
Townend, Ian
Paterson, David M.
Gong, Zheng
Jiang, Qin
Feng, Qian
Yu, Xiping
Funder
NERC
Grant ID
NE/N016009/1
Keywords
Bed stability
Biological cohesion
Biostabilization
Coastal safety
Sediment erosion
Wave action
QE Geology
QH301 Biology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Cohesive extracellular polymeric substances (EPS) generated by microorganisms abundant on Earth are regarded as bed “stabilizers” increasing the erosion threshold in sedimentary systems. However, most observations of this phenomenon have been taken under steady flow conditions. In contrast, we present how EPS affect the bed movement under wave action, showing a destabilization of the system. We demonstrate a complex behavior of the bio‐sedimentary deposits, which encompasses liquefaction, mass motion, varying bed formations and erosion, depending on the amount of EPS present. Small quantities of EPS induce higher mobility of the sediments, liquefying an otherwise stable bed. Bed with larger quantities of EPS undergoes a synchronized mechanical oscillation. Our analysis clarifies how biological cohesion can potentially put coastal wetlands at risk by increasing their vulnerability to waves. These findings lead to a revised understanding of the different roles played by microbial life, and their importance as mediators of seabed mobility.
Citation
Chen , X , Zhang , C , Townend , I , Paterson , D M , Gong , Z , Jiang , Q , Feng , Q & Yu , X 2021 , ' Biological cohesion as the architect of bed movement under wave action ' , Geophysical Research Letters , vol. 48 , no. 5 , e2020GL092137 . https://doi.org/10.1029/2020gl092137
Publication
Geophysical Research Letters
Status
Peer reviewed
DOI
https://doi.org/10.1029/2020gl092137
ISSN
0094-8276
Type
Journal article
Rights
Copyright © 2021. American Geophysical Union. All Rights Reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1029/2020GL092137.
Description
Funding for this project was provided by the National Key Research and Development Project, MOST, China (2018YFC0407506), the National Natural Science Foundation of China (51620105005), and the China Postdoctoral Science Foundation (2020M680580). D. M. Paterson acknowledges NERC funding (NE/N016009/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23542

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter