St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

New thermally activated delayed fluorescence emitters and room-temperature organic long-persistent luminescence

Date
28/06/2021
Author
Li, Wenbo
Supervisor
Samuel, Ifor D. W.
Funder
China Scholarship Council (CSC)
Grant ID
201708060003
Keywords
Thermally activated delayed fluorescence
TADF
Organic light-emitting diodes
OLED
Organic long-persistent luminescence
OLPL
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Organic light-emitting diodes (OLEDs) have attracted a lot of attentions because of their high performance in display applications. Organic emitters are still being developed to improve efficiency, colour gamut and sustainability, and thermally activated delayed fluorescence (TADF) materials are widely regarded as one of the most promising next-generation OLED emitters. To date, green TADF emitters have been developed, and the corresponding OLEDs show high light-emitting efficiency and long operation lifetimes. However, the performance of red and blue TADF OLEDs still lag their green-emitting counterparts. For this reason, this work focuses on developing new red and deep-blue TADF materials. A group of red and blue TADF emitters were designed and synthesized. Their photophysical properties and electroluminescence performance were also studied. In addition, it was found that doping some of these new emitters into common host materials, such as 2,8-bis(diphenyl-phosphoryl)dibenzo[b,d]thiophene (PPT), 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) or poly(methyl methacrylate) (PMMA), can lead to organic long-persistent luminescence (OLPL) lasting for thousands of seconds at room temperature. As traditional room-temperature OLPL materials are based on exciplex emitters, the new OLPL systems discovered here demonstrates that exciplex formation is not required for harvesting OLPL. This enables a wide range of host materials to be used including materials as simple as PMMA. Expanding this concept further, the author developed a method for large-scale PMMA-based OLPL sample fabrication to take full advantage of its low expense. This method gives thick (> 2 mm) and clear OLPL products, and all the required equipment is easily accessed in lab condition. Combining the flexible design of TADF emitters and mature PMMA industry, this work opens the ‘door’ of large-scale, colour tuneable and cost-efficient room-temperature OLPL materials. At the same time, the light-emitting properties and mechanism of these new OLPL emitters were studied, which provides a guideline for further OLPL emitter improvements.
DOI
https://doi.org/10.17630/sta/99
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2023-03-03
Embargo Reason: Thesis restricted in accordance with University regulations. Electronic copy restricted until 3rd March 2023
Collections
  • Physics & Astronomy Theses
Description of related resources
Data underpinning Wenbo Li's thesis. Li, W., University of St Andrews. DOI: https://doi.org/10.17630/24c82e40-099d-4bbd-9a3d-6f76a1c7593c
Related resources
https://doi.org/10.17630/24c82e40-099d-4bbd-9a3d-6f76a1c7593c
URI
http://hdl.handle.net/10023/23529

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter