Files in this item
Calibrating models of cancer invasion : parameter estimation using approximate Bayesian computation and gradient matching
Item metadata
dc.contributor.author | Xiao, Yunchen | |
dc.contributor.author | Thomas, Len | |
dc.contributor.author | Chaplain, Mark Andrew Joseph | |
dc.date.accessioned | 2021-07-07T14:30:15Z | |
dc.date.available | 2021-07-07T14:30:15Z | |
dc.date.issued | 2021-06-16 | |
dc.identifier.citation | Xiao , Y , Thomas , L & Chaplain , M A J 2021 , ' Calibrating models of cancer invasion : parameter estimation using approximate Bayesian computation and gradient matching ' , Royal Society Open Science , vol. 8 , no. 6 , 202237 . https://doi.org/10.1098/rsos.202237 | en |
dc.identifier.issn | 2054-5703 | |
dc.identifier.other | PURE: 274559124 | |
dc.identifier.other | PURE UUID: ad6cee3e-4e6a-478b-a77b-591e2208b806 | |
dc.identifier.other | ORCID: /0000-0002-7436-067X/work/96489382 | |
dc.identifier.other | ORCID: /0000-0001-5727-2160/work/96489554 | |
dc.identifier.other | WOS: 000663721400001 | |
dc.identifier.other | Scopus: 85111127910 | |
dc.identifier.uri | http://hdl.handle.net/10023/23483 | |
dc.description | Funding: Y.X. is funded by a Doctoral Training Partnership grant from the Engineering and Physical Sciences ResearchCouncil (EPSRC) and a University of St Andrews St Leonard’s International Fee Scholarship. | en |
dc.description.abstract | We present two different methods to estimate parameters within a partial differential equation model of cancer invasion. The model describes the spatio-temporal evolution of three variables—tumour cell density, extracellular matrix density and matrix degrading enzyme concentration—in a one-dimensional tissue domain. The first method is a likelihood-free approach associated with approximate Bayesian computation; the second is a two-stage gradient matching method based on smoothing the data with a generalized additive model (GAM) and matching gradients from the GAM to those from the model. Both methods performed well on simulated data. To increase realism, additionally we tested the gradient matching scheme with simulated measurement error and found that the ability to estimate some model parameters deteriorated rapidly as measurement error increased. | |
dc.format.extent | 17 | |
dc.language.iso | eng | |
dc.relation.ispartof | Royal Society Open Science | en |
dc.rights | Copyright © 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. | en |
dc.subject | Tumour cells | en |
dc.subject | Cancer invasion | en |
dc.subject | Metastasis | en |
dc.subject | Approximate Bayesian computation | en |
dc.subject | Bhattacharyya distance | en |
dc.subject | Gradient matching | en |
dc.subject | Generalized additive models | en |
dc.subject | QA Mathematics | en |
dc.subject | QH301 Biology | en |
dc.subject | RC0254 Neoplasms. Tumors. Oncology (including Cancer) | en |
dc.subject | DAS | en |
dc.subject | SDG 3 - Good Health and Well-being | en |
dc.subject.lcc | QA | en |
dc.subject.lcc | QH301 | en |
dc.subject.lcc | RC0254 | en |
dc.title | Calibrating models of cancer invasion : parameter estimation using approximate Bayesian computation and gradient matching | en |
dc.type | Journal article | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. Applied Mathematics | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.contributor.institution | University of St Andrews. Statistics | en |
dc.contributor.institution | University of St Andrews. Centre for Research into Ecological & Environmental Modelling | en |
dc.identifier.doi | https://doi.org/10.1098/rsos.202237 | |
dc.description.status | Peer reviewed | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.