St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing associative memory recall and storage capacity using confocal cavity QED

Thumbnail
View/Open
Marsh_2021_PRX_Enhancing_associative_CC.pdf (5.305Mb)
Date
02/06/2021
Author
Marsh, Brendan P.
Guo, Yudan
Kroeze, Ronen M.
Gopalakrishnan, Sarang
Ganguli, Surya
Keeling, Jonathan
Lev, Benjamin L.
Keywords
Atomic and molecular physics
Quantum physics
Statistical physics
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We introduce a near-term experimental platform for realizing an associative memory. It can simultaneously store many memories by using spinful bosons coupled to a degenerate multimode optical cavity. The associative memory is realized by a confocal cavity QED neural network, with the modes serving as the synapses, connecting a network of superradiant atomic spin ensembles,which serve as the neurons. Memories are encoded in the connectivity matrix between the spins and can be accessed through the input and output of patterns of light. Each aspect of the scheme is based on recently demonstrated technology using a confocal cavity and Bose-condensed atoms. Our scheme has two conceptually novel elements. First, it introduces a new form of random spin system that interpolates between a ferromagnetic and a spin glass regime as a physical parameter is tuned—the positions of ensembles within the cavity. Second, and more importantly, the spins relax via deterministic steepest-descent dynamics rather than Glauber dynamics. We show that this nonequilibrium quantum-optical scheme has significant advantages for associative memory over Glauber dynamics: These dynamics can enhance the network’s ability to store and recall memories beyond that of the standard Hopfield model. Surprisingly, the cavity QED dynamics can retrieve memories even when the system is in the spin glass phase. Thus, the experimental platform provides a novel physical instantiation of associative memories and spin glasses as well as provides an unusual form of relaxational dynamics that is conducive to memory recall even in regimes where it was thought to be impossible.
Citation
Marsh , B P , Guo , Y , Kroeze , R M , Gopalakrishnan , S , Ganguli , S , Keeling , J & Lev , B L 2021 , ' Enhancing associative memory recall and storage capacity using confocal cavity QED ' , Physical Review X , vol. 11 , no. 2 , 021048 . https://doi.org/10.1103/PhysRevX.11.021048
Publication
Physical Review X
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevX.11.021048
ISSN
2160-3308
Type
Journal article
Rights
Copyright © 2021 the Author(s). Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI
Description
Funding: Y.G. and B.M. acknowledgefunding from the Stanford Q-FARM Graduate Student Fellowship and the NSF Graduate Research Fellowship, respectively. J.K. acknowledges support from the Leverhulme Trust (IAF-2014-025), and S.G. acknowledges funding from the James S. McDonnell and Simons Foundations and an NSF Career Award.
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/2009.01227
URI
http://hdl.handle.net/10023/23472

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter